Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 34-41.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.003
• Orginal Article • Previous Articles Next Articles
QUAN Wen-li1, CHAN Zhu-long2
Received:
2016-07-12
Online:
2016-10-25
Published:
2016-10-12
QUAN Wen-li, CHAN Zhu-long. Research Progress on Drought Resistance Mechanism of Alfalfa[J]. Biotechnology Bulletin, 2016, 32(10): 34-41.
[1] Tang L, Cai H, Ji W, et al. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa(Medicago sativa L. )[J]. Plant Physiology and Biochemistry, 2013, 71:22-30. [2] Kang Y, Han Y, Torres-Jerez I, et al. System responses to long-term drought and re-watering of two contrasting alfalfa varieties [J]. The Plant Journal, 2011, 68(5):871-889. [3] Wan S, Hu J, Hu S, et al. The study on water use efficiency of alfalfa cultivars in Weibei High Plateau [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2003, 13(2):133-137. [4] Hund A, Ruta N, Liedgens M. Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance [J]. Plant and Soil, 2009, 318(1-2):311-325. [5] 陈积山, 李锦华, 常根柱, 等. 不同苜蓿品种根系形态结构的抗旱性分析[J]. 内蒙古草业, 2008, 20(2):41-44. [6] 白文明, 左强, 黄元仿, 等. 乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究[J]. 植物生态学报, 2001, 25(1):35-41. [7] 王富贵. 18 份苜蓿材料根系形态特征及与地上生物量关系的研究[D]. 呼和浩特:内蒙古农业大学, 2011. [8] Liu F, Stützel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth(Amaranthus spp.)in response to drought stress [J]. Scientia Horticulturae, 2004, 102(1):15-27. [9] Riederer M, Schreiber L. Protecting against water loss:analysis of the barrier properties of plant cuticles [J]. Journal of Experimental Botany, 2001, 52(363):2023-2032. [10] Ni Y, Guo YJ, Han L, et al. Leaf cuticular waxes and physiological parameters in alfalfa leaves as influenced by drought [J]. Photosynthetica, 2012, 50(3):458-466. [11] 郭彦军, 倪郁, 郭芸江, 等. 水热胁迫对紫花苜蓿叶表皮蜡质组分及生理指标的影响[J]. 作物学报, 2011, 37(5):911-917. [12] 周玲艳, 刘胜洪, 秦华明, 等. 5 个苜蓿品种叶片表面蜡质覆盖与抗旱性的关系[J]. 草业科学, 2013, 30(4):596-601. [13] Erice G, Louahlia S, Irigoyen JJ, et al. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery [J]. Journal of Plant Physiology, 2010, 167(2):114-120. [14] Yang P, Zhang P, Li B, et al. Effect of nodules on dehydration response in alfalfa(Medicago sativa L. )[J]. Environmental and Experimental Botany, 2013, 86:29-34. [15] Szabados L, Savourë A. Proline:a multifunctional amino acid [J]. Trends in Plant Science, 2010, 15(2):89-97. [16] Aranjuelo I, Molero G, Erice G, et al. Plant physiology and proteomics reveals the leaf response to drought in alfalfa(Medicago sativa L. )[J]. Journal of Experimental Botany, 2011, 62(1):111-123. [17] Antolín MC, Muro I, Sánchez-Díaz M. Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions [J]. Environmental and Experimental Botany, 2010, 68(1):75-82. [18] 罗永忠. 新疆大叶苜蓿对土壤水分胁迫的生理响应及生态适应性研究[D]. 兰州:甘肃农业大学, 2011. [19] Slama I, Tayachi S, Jdey A, et al. Differential response to water deficit stress in alfalfa(Medicago sativa)cultivars:Growth, water relations, osmolyte accumulation and lipid peroxidation [J]. African Journal of Biotechnology, 2011, 10(72):16250-16259. [20] 张攀, 杨培志, 王卫栋, 等. 干旱胁迫下根瘤菌共生紫花苜蓿抗旱生理变化研究[J]. 草地学报, 2013, 21(5):938-944. [21] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930. [22] Chakrabarty A, Aditya M, Dey N, et al. Antioxidant signaling and redox regulation in drought-and salinity-stressed plants [M]//Hossain MA, Wani SH, Bhattacharjee S, et al. Drought stress tolerance in plants, volume 1. Springer International Publishing, 2016:465-498. [23] Zang Q, Ma C, Xue X, et al. Overexpression of a cytosolic ascorbate peroxidase gene, OsAPX2, increases salt tolerance in transgenic alfalfa[J]. Journal of Integrative Agriculture, 2014, 13(11):2500-2507. [24] Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction [J]. Annual of Review of Plant Biology, 2004, 55:373-399. [25] Boldaji SAH, Khavari-Nejad RA, Sajedi RH, et al. Water availabi-lity effects on antioxidant enzyme activities, lipid peroxidation, and reducing sugar contents of alfalfa(Medicago sativa L. )[J]. Acta Physiologiae Plantarum, 2012, 34(3):1177-1186. [26] 霍学敏, 呼天明, 杨培志, 等. 干旱胁迫对苗期紫花苜蓿 3 种生理指标的影响[J]. 草业科学, 2010, 27(4):89-92. [27] Quan WL, Liu X, Wang HQ, et al. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties [J]. Frontiers in Plant Science, 2015, 6:1256. [28] Davies WJ, Metcalfe J, Lodge TA, et al. Plant growth substances and the regulation of growth under drought [J]. Functional Plant Biology, 1986, 13(1):105-125. [29] 韩瑞宏, 张亚光, 田华, 等. 干旱胁迫下紫花苜蓿叶片几种内源激素的变化[J]. 华北农学报, 2008, 23(3):81-84. [30] Xu J, Li XL, Luo L. Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress [J]. Applied and Environmental Microbiology, 2012, 78(22):8056-8061. [31] Fadul GMA, Wan L, He F, et al. Abscisic acid content in roots and root characteristics of alfalfa under deficit irrigation [J]. African Journal of Agricultural Research, 2016, 11(11):935-940. [32] 李跃, 万里强, 李向林. 内源脱落酸生理作用机制及其与苜蓿耐旱性关系研究进展[J]. 草业学报, 2015, 24(11):195-205. [33] 任敏, 何金环. 自然干旱胁迫下紫花苜蓿叶片和根部 ABA 的代谢变化 [J]. 安徽农业科学, 2010, 38(4):1771-1772. [34] Wang YX. Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress [J]. Molecular Biology Reports, 2013, 40(11):6451-6458. [35] 冯光燕, 王学敏, 付媛媛, 等. 紫花苜蓿 MsWRKY33 转录因子的分离及遗传转化研究[J]. 草业学报, 2015, 24(11):48-57. [36] Zhang JY, Broeckling CD, Blancaflor EB, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa)[J]. The Plant Journal, 2005, 42(5):689-707. [37] Li H, Wang Z, Ke Q, et al. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa [J]. Plant Physiology and Biochemistry, 2014, 85:31-40. [38] Tang L, Cai H, Zhai H, et al. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa(Medicago sativa L. )[J]. Plant Cell, Tissue and Organ Culture, 2014, 118(1):77-86. [39] Guo P, Wei H, Zhang W, et al. The dehydration-induced ERECTA gene, MsSIK1, from alfalfa improved water use efficiency in transgenic Arabidopsis [J]. Acta Physiologiae Plantarum, 2016, 38(2):1-12. [40] Kang Y, Udvardi M. Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery [J]. Plant Signaling & Behavior, 2012, 7(5):539-543. [41] Zhang Z, Wang Y, Chang L, et al. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa(Medicago sativa), confers drought and salt tolerance in transgenic tobacco [J]. Plant Cell Reports, 2016, 35(2):439-453. [42] Webb KJ. Transformation of forage legumes using Agrobacterium tumefaciens [J]. Theoretical and Applied Genetics, 1986, 72(1):53-58. [43] Zhang J, Duan Z, Zhang D, et al. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa(Medicago sativa L. )[J]. Biochemical and Biophysical Research Communications, 2016, 472(1):75-82. [44] Wang Z, Li H, Ke Q, et al. Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses [J]. Plant Physiology and Biochemistry, 2014, 84:67-77. [45] Duan Z, Zhang D, Zhang J, et al. Co-transforming bar and CsALDH genes enhanced resistance to herbicide and drought and salt stress in transgenic alfalfa(Medicago sativa L. )[J]. Frontiers in Plant Science, 2015, 6:1115. [46] Long R, Yang Q, Kang J, et al. Molecular cloning and characterization of a novel stress responsive gene in alfalfa [J]. Biologia Plantarum, 2012, 56(1):43-49. [47] Ma L, Wang Y, Liu W, et al. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation [J]. Biotechnology Letters, 2014, 36(11):2331-2341. [48] Fehér-Juhász E, Majer P, Sass L, et al. Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress [J]. Acta Physiologiae Plantarum, 2014, 36(3):663-673. [49] Bao AK, Du BQ, Touil L, et al. Co-expression of tonoplast Cation/H + antiporter and H + -pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions [J]. Plant Biotechnology Journal, 2016, 14(3):964-975. [50] Wang Z, Ke Q, Kim MD, et al. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance [J]. PLoS ONE, 2015, 10(5):e0126050. [51] Zhou C, Ma ZY, Zhu L, et al. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa(Medicago sativa L. )[J]. Genetics and Molecular Research:GMR, 2015, 14(4):17204. [52] Bohnert HJ, Gong Q, Li P, et al. Unraveling abiotic stress tolerance mechanisms-getting genomics going [J]. Current Opinion in Plant Biology, 2006, 9(2):180-188. [53] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance [J]. Journal of Experimental Botany, 2007, 58(2):221-227. [54] Gómez-Cadenas A, Arbona V, Jacas J, et al. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants [J]. Journal of Plant Growth Regulation, 2002, 21(3):234-240. [55] 包爱科, 杜宝强, 王锁民. 紫花苜蓿耐盐, 抗旱生理机制研究进展[J]. 草业科学, 2011, 28(9):1700-1705. [56] 张立全, 李慧, 张凤英, 等.苜蓿属植物转录因子研究进展[J].中国草地学报, 2014(2):108-116. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[3] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[4] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[5] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[6] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[7] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[8] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[9] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[10] | YU Bo, QIN Xiao-hui, ZHAO Yang. Mechanisms of Plant Sensing Drought Signals [J]. Biotechnology Bulletin, 2023, 39(11): 6-17. |
[11] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[12] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[13] | YAN Meng-yu, WEI Xiao-wei, CAO Jing, LAN Hai-yan. Cloning of Basic Helix-loop-helix(bHLH)Transcription Factor Gene SabHLH169 in Suaeda aralocaspica and Analysis of Its Resistances to Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 328-339. |
[14] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[15] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||