Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (10): 84-96.doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.005
• Orginal Article • Previous Articles Next Articles
YANG Zheng-ting1, LIU Jian-xiang2
Received:
2016-07-22
Online:
2016-10-25
Published:
2016-10-12
YANG Zheng-ting, LIU Jian-xiang. Endoplasmic Reticulum Stress Response in Plants[J]. Biotechnology Bulletin, 2016, 32(10): 84-96.
[1] Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory[J]. Nature, 2003, 426(6968):891-894. [2] Kanapin A, Batalov S, Davis MJ, et al. Mouse proteome analysis[J]. Genome Res, 2003, 13(6B):1335-1344. [3] Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality-control[J]. Proc Natl Acad Sci USA, 1994, 91(3):913-917. [4] Vitale A, Boston RS. Endoplasmic reticulum quality control and the unfolded protein response:Insights from plants[J]. Traffic, 2008, 9(10):1581-1588. [5] Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Bio, 2007, 8(7):519-529. [6] Otero JH, Lizak B, Hendershot LM. Life and death of a BiP substrate[J]. Semin Cell Dev Biol, 2010, 21(5):472-478. [7] Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides[J]. Annu Rev Biochem, 1985, 54:631-664. [8] Howell SH. Endoplasmic reticulum stress responses in plants[J]. Annu Rev Plant Biol, 2013, 64:477-499. [9] Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum[J]. Annu Rev Biochem, 2004, 73:1019-1049. [10] Hubbard SC, Ivatt RJ. Synthesis and processing of asparagine-linked oligosaccharides[J]. Annu Rev Biochem, 1981, 50:555-583. [11] Pattison RJ, Amtmann A. N-glycan production in the endoplasmic reticulum of plants[J]. Trend Plant Sci, 2009, 14(2):92-99. [12] Gallois P, Makishima T, Hecht V, et al. An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant[J]. Plant J, 1997, 11(6):1325-1331. [13] Danon A, Rotari VI, Gordon A, et al. Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death[J]. J Biol Chem, 2004, 279(1):779-787. [14] Lerouxel O, Mouille G, Andeme-Onzighi C, et al. Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth[J]. Plant J, 2005, 42(4):455-468. [15] Koiwa H, Li F, McCully MG, et al. The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress[J]. Plant Cell, 2003, 15(10):2273-2284. [16] Deprez P, Gautschi M, Helenius A. More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle[J]. Mol Cell, 2005, 19(2):183-195. [17] Olivari S, Cali T, Salo KEH, et al. EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation[J]. Biochem Biophy Res Commun, 2006, 349(4):1278-1284. [18] Hegde RS, Ploegh HL. Quality and quantity control at the endoplasmic reticulum[J]. Curr Opin Cell Biol, 2010, 22(4):437-446. [19] Jin Y, Zhuang M, Hendershot LM. ERdj3, a luminal ER DnaJ homologue, binds directly to unfolded proteins in the mammalian ER:identification of critical residues[J]. Biochem, 2009, 48(1):41-49. [20] Meunier L, Usherwood YK, Chung KT, et al. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins[J]. Mol Biol Cell, 2002, 13(12):4456-4469. [21] Schott A, Ravaud S, Keller S, et al. Arabidopsis stromal-derived factor2(SDF2)is a crucial target of the unfolded protein response in the endoplasmic reticulum[J]. J Biol Chem, 2010, 285(23):18113-18121. [22] Kleizen B, Braakman I. Protein folding and quality control in the endoplasmic reticulum[J]. Curr Opin Cell Biol, 2004, 16(4):343-349. [23] Flynn GC, Chappell TG, Rothman JE. Peptide binding and release by proteins implicated as catalysts of protein assembly[J]. Science, 1989, 245(4916):385-390. [24] Cheetham ME, Caplan AJ. Structure, function and evolution of DnaJ:conservation and adaptation of chaperone function[J]. Cell Stress Chaperon, 1998, 3(1):28-36. [25] Liu JX, Srivastava R, Che P, et al. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28[J]. Plant Cell, 2007, 19(12):4111-4119. [26] Iwata Y, Fedoroff NV, Koizumi N. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response[J]. Plant Cell, 2008, 20(11):3107-3121. [27] Martinez IM, Chrispeels MJ. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes[J]. Plant Cell, 2003, 15(2):561-576. [28] Anderson JV, Li QB, Haskell DW, et al. Structural organization of the Spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold-acclimation[J]. Plant Physiol, 1994, 104(4):1359-1370. [29] Jelitto-Van Dooren EPWM, Vidal S, Denecke J. Anticipating endoplasmic reticulum stress:a novel early response before pathogenesis-related gene induction[J]. Plant Cell, 1999, 11(10):1935-1943. [30] Valente MAS, Faria JAQA, Soares-Ramos JRL, et al. The ER luminal binding protein(BiP)mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco[J]. J Exp Bot, 2009, 60(2):533-546. [31] Alvim FC, Carolino SMB, Cascardo JCM, et al. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress[J]. Plant Physiol, 2001, 126(3):1042-1054. [32] Wang D, Weaver ND, Kesarwani M, et al. Induction of protein secretory pathway is required for systemic acquired resistance[J]. Science, 2005, 308(5724):1036-1040. [33] Boston RS, Fontes EBP, Shank BB, et al. Increased expression of the maize immunoglobulin binding-protein homolog b-70 in 3 zein regulatory mutants[J]. Plant Cell, 1991, 3(5):497-505. [34] Yuhya W, Hiroshi Y, Youko O, et al. Expression of ER quality con- trol-related genes in response to changes in BiP1 levels in develo-ping rice endosperm[J]. Plant J, 2011, 65(5):675-689. [35] Alves MS, Reis PAB, Dadalto SP, et al. A novel transcription factor, ERD15(early responsive to dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal[J]. J Biol Chem, 2011, 286(22):20020-20030. [36] Navazio L, Miuzzo M, Royle L, et al. Monitoring endoplasmic reticulum-to-Golgi traffic of a plant calreticulin by protein glycosylation analysis[J]. Biochem, 2002, 41(48):14141-14149. [37] Jia XY, He LH, Jing RL, et al. Calreticulin:conserved protein and diverse functions in plants[J]. Physiol Plant, 2009, 136(2):127-138. [38] Jia XY, Xu CY, Jing RL, et al. Molecular cloning and characterization of wheat calreticulin(CRT)gene involved in drought-stressed responses[J]. J Exp Bot, 2008, 59(4):739-751. [39] Ishiguro S, Watanabe Y, Ito N, et al. SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins[J]. EMBO J, 2002, 21(5):898-908. [40] Sevier CS, Kaiser CA. Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1[J]. Mol Biol Cell, 2006, 17(5):2256-2266. [41] Dixon DP, Van Lith M, Edwards R, et al. Cloning and initial characterization of the Arabidopsis thaliana endoplasmic reticulum oxidoreductins[J]. Antioxid Redox Signal, 2003, 5(4):389-396. [42] Onda Y, Kumamaru T, Kawagoe Y. ER membrane-localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm[J]. Proc Natl Acad Sci USA, 2009, 106(33):14156-14161. [43] Lu DP, Christopher DA. Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana[J]. Mol Genet Genomics, 2008, 280(3):199-210. [44] Schlenstedt G, Harris S, Risse B, et al. A yeast Dnaj homolog, Scj1p, can function in the endoplasmic-reticulum with Bip/Kar2p via a conserved domain that specifies interactions with hsp70s[J]. J Cell Biol, 1995, 129(4):979-988. [45] Yang KZ, Xia C, Liu XL, et al. A mutation in THERMOSENSITIVE MALE STERILE 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis[J]. Plant J, 2009, 57(5):870-882. [46] Yamamoto T, Mori Y, Ishibashi T, et al. Interaction between proliferating cell nuclear antigen(PCNA)and a DnaJ induced by DNA damage[J]. J Plant Res, 2005, 118(2):91-97. [47] Zhu X, Liang S, Yin J, et al. The DnaJ OsDjA7/8 is essential for chloroplast development in rice(Oryza sativa)[J]. Gene, 2015, 574(1):11-9. [48] Woehlbier U, Hetz C. Modulating stress responses by the UPRosome:A matter of life and death[J]. Trend Biochem Sci, 2011, 36(6):329-337. [49] Shore GC, Papa FR, Oakes SA. Signaling cell death from the endoplasmic reticulum stress response[J]. Curr Opin Cell Biol, 2011, 23(2):143-149. [50] Merksamer PI, Papa FR. The UPR and cell fate at a glance[J]. J Cell Sci, 2010, 123(7):1003-1006. [51] Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum:brothers in arms[J]. Mol Cell, 2010, 40(2):238-252. [52] Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic-reticulum resident proteins requires a transmembrane protein-kinase[J]. Cell, 1993, 73(6):1197-1206. [53] Shen XH, Ellis RE, Lee K, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C-elegans development[J]. Cell, 2001, 107(7):893-903. [54] Calfon M, Zeng HQ, Urano F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA[J]. Nature, 2002, 420(6912):202. [55] Haze K, Yoshida H, Yanagi H, et al. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress[J]. Mol Biol Cell, 1999, 10(11):3787-3799. [56] Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells[J]. Proc Natl Acad Sci USA, 2004, 101(31):11269-11274. [57] Liu JX, Howell SH. Managing the protein folding demands in the endoplasmic reticulum of plants[J]. New Phytol, 2016, 211(2):418-428. [58] Liu JX, Howell SH. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis[J]. Plant Cell, 2010, 22(3):782-796. [59] Sun L, Lu SJ, Zhang SS, et al. The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis[J]. Mol Plant, 2013, 6(5):1605-1615. [60] Le S, Zhang SS, Lu SJ, et al. Site-1 protease cleavage site is important for the ER stress-induced activation of membrane-associated transcription factor bZIP28 in Arabidopsis[J]. Sci China Life Sci, 2015, 58(3):270-275. [61] Song ZT, Sun L, Lu SJ, et al. Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. [J]. Proc Natl Acad Sci USA, 2015, 112(9):2900-2905. [62] Srivastava R, Chen Y, Deng Y, et al. Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions[J]. Plant J, 2012, 70(6):1033-1042. [63] Deng Y, Humbert S, Liu JX, et al. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(17):7247-7252. [64] Nagashima Y, Mishiba K, Suzuki E, et al. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor[J]. Sci Rep, 2011, 1:29. [65] Lu SJ, Yang ZT, Sun L, et al. Conservation of IRE1-Regulated bZIP74 mRNA unconventional splicing in Rice(Oryza sativa L.)involved in ER stress responses[J]. Mol Plant, 2012, 5(2):504-514. [66] Sun L, Yang ZT, Song ZT, et al. The plant-specific transcription factor gene NAC103, is induced by bZIP60 through a new cis -regulatory element to modulate the unfolded protein response in Arabidopsis[J]. Plant J, 2013, 76(2):274-286. [67] Yang Z, Lu S, Wang M, et al. A plasma membrane-tethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in Arabidopsis[J]. Plant J, 2014, 79(6):1033-1043. [68] Yang ZT, Wang MJ, Sun L, et al. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants[J]. Plos Genet, 2014, 10(3):119-123. [69] Wang SY, Narendra S, Fedoroff N. Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response[J]. Proc Natl Acad Sci USA, 2007, 104(10):3817-3822. [70] Chen YN, Brandizzi F. AtIRE1A/AtIRE1B and AGB1 independently control two essential unfolded protein response pathways in Arabidopsis[J]. Plant J, 2012, 69(2):266-277. [71] Takayama S, Sato T, Krajewski S, et al. Cloning and functional-analysis of Bag-1 - a novel Bcl-2-binding protein with anti-cell death activity[J]. Cell, 1995, 80(2):279-284. [72] Doukhanina EV, Chen S, van der Zalm E, et al. Identification and functional characterization of the BAG protein family in Arabidopsis thaliana[J]. J Biol Chem, 2006, 281(27):18793-18801. [73] Williams B, Kabbage M, Britt R, et al. AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response[J]. Proc Natl Acad Sci USA, 2010, 107(13):6088-6093. [74] Kang CH, Jung WY, Kang YH, et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants[J]. Cell Death Differ, 2006, 13(1):84-95. [75] Kawai-Yamada M, Jin LH, Yoshinaga K, et al. Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1(AtBl-1)[J]. Proc Natl Acad Sci USA, 2001, 98(21):12295-12300. [76] Sanchez P, Zabala MD, Grant M. AtBI-1, a plant homologue of Bax Inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge[J]. Plant J, 2000, 21(4):393-399. [77] Coll NS, Vercammen D, Smidler A, et al. Arabidopsis type i metacaspases control cell death[J]. Science, 2010, 330(6009):1393-1397. [78] Tsiatsiani L, Van Breusegem F, Gallois P, et al. Metacaspases[J]. Cell Death Differ, 2011, 18(8):1279-1288. [79] Lam E, Zhang Y. Regulating the reapers:activating metacaspases for programmed cell death[J]. Trend Plant Sci, 2012, 17(8):487-494. [80] Zhang LR, Xu QX, Xing D, et al. Real-Time detection of caspase-3-like protease activation in vivo using fluorescence resonance energy transfer during plant programmed cell death induced by ultraviolet c overexposure[J]. Plant Physiol, 2009, 150(4):1773-1783. [81] Han JJ, Lin W, Oda Y, et al. The proteasome is responsible for caspase-3-like activity during xylem development[J]. Plant J, 2012, 72(1):129-141. [82] Hatsugai N, Iwasaki S, Tamura K, et al. A novel membrane fusion-mediated plant immunity against bacterial pathogens[J]. Gene Dev, 2009, 23(21):2496-2506. [83] Ye Y, Li Z, Xing D. Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death[J]. Plant Cell Environ, 2013, 36(1):1-15. [84] Deng Y, Srivastava R, Srivastava R, et al. Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in Arabidopsis[J]. Proc Natl Acad Sci USA, 2013, 110(48):19633-19638. [85] Li JQ, Zhang JA, Wang XC, et al. A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana[J]. Sci China Life Sci, 2010, 53(11):1299-1306. [86] Li P, Wind JJ, Shi XL, et al. Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain[J]. Proc Natl Acad Sci USA, 2011, 108(8):3436-3441. [87] Liu JX, Srivastava R, Che P, et al. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling[J]. Plant J, 2007, 51(5):897-909. [88] Liu JX, Srivastava R, Howell SH. Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis[J]. Plant Cell Environ, 2008, 31(12):1735-1743. [89] Zhou SF, Sun L, Valdés AE, et al. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis[J]. New Phytol, 2015, 208(1):188-97. [90] Gao HB, Brandizzi F, Benning C, et al. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2008, 105 (42):16398-16403. [91] Fujita M, Mizukado S, Fujita Y, et al. Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor(FOX)gene hunting system[J]. Biochem Biophy Res Commun, 2007, 364(2):250-257. [92] Humbert S, Zhong SH, Deng Y, et al. Alteration of the bZIP60/IRE1 pathway affects plant response to ER stress in Arabidopsis thaliana[J]. PLoS One, 2012, 7(6):e39023. [93] Sriburi R, Jackowski S, Mori K, et al. XBP1:a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum[J]. J Cell Biol, 2004, 167(1):35-41. [94] Sriburi R, Jackowski S, Mori K, et al. XBP1(S)and the mechanism of phospholipid biosynthesis[J]. FASEB J, 2006, 20(5):A952. [95] Bommiasamy H, Back SH, Fagone P, et al. ATF6 alpha induces XBP1-independent expansion of the endoplasmic reticulum[J]. J Cell Sci, 2009, 122(10):1626-1636. [96] Seo PJ, Kim MJ, Park JY, et al. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. Plant J, 2010, 61(4):661-671. [97] Lam E, Kato N, Lawton M. Programmed cell death, mitochondria and the plant hypersensitive response[J]. Nature, 2001, 411(6839):848-853. [98] Lai ZB, Wang F, Zheng ZY, et al. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens[J]. Plant J, 2011, 66(6):953-968. |
[1] | PENG Guo-ying, HU Liang, HUANG Chao, YANG Kun, WAN Wei, HUANG Chang-gan. Transcriptome Analysis of Response to Heavy Metal Copper Stress in Setcreasea purpurea Root Tissue [J]. Biotechnology Bulletin, 2022, 38(2): 83-94. |
[2] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
[3] | ZHONG Yu-qing, CHEN Jia-jia. Regulation of Lanthanum on Rice Transcriptome Patterns Under Copper Stress [J]. Biotechnology Bulletin, 2020, 36(8): 8-14. |
[4] | CUI Ya-quan, FENG Shou-shuai, HUANG Xing, CHEN Jin-cai, YANG Hai-lin. Directed Domestication of Copper Tolerance for Enhancing Low-grade Chalcopyrite Bioleaching by Acidithiobacillus caldus [J]. Biotechnology Bulletin, 2019, 35(8): 95-102. |
[5] | CHEN Qian, XIE Qi. The Research Progress of the Endoplasmic Reticulum(ER)Stress Response in Plant [J]. Biotechnology Bulletin, 2018, 34(1): 15-25. |
[6] | CAI Shen-wen, XU Zhong-rui, XIONG Zhi-ting, WANG Jia-zhen, CHEN Yao. Sequence Divergence and Analysis of Expression Difference of Vacuolar Invertase Gene EhvINV from Different Resistant Populations in Elsholtzia haichowensis [J]. Biotechnology Bulletin, 2016, 32(10): 170-179. |
[7] | Wang Shishan, Chen Yanke, Yang Jun. The Gene Sequence Optimization of Membrane Protein in Prokaryotic Expression System [J]. Biotechnology Bulletin, 2015, 31(12): 50-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||