[1] Zhu XY, Chase MW, Qiu YL, et al. Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids[J] . BMC Evol Biol, 2007, 7:217. [2] Anderson JT, Wagner MR, Rushworth CA, et al. The evolution of quantitative traits in complex environments[J] . Heredity(Edinb), 2014, 112(1):4-12. [3] Bergthorsson U, Adams KL, Thomason B, et al. Widespread horizontal transfer of mitochondrial genes in flowering plants[J] . Nature, 2003, 424(6945):197-201. [4] Westwood JH, Yoder JI, Timko MP, et al. The evolution of parasitism in plants[J] . Trends Plant Sci, 2010, 15(4):227-235. [5] Olmstead R, Palmer J. Chloroplast DNA systematics:a review of methods and data analysis[J] . American Journal of Botany(USA), 1994, 81(9):1205-1224. [6] Moore MJ, Soltis PS, Bell CD, et al. Phylogenetic analysis of 83 plas-tid genes further resolves the early diversification of eudicots[J] . Proc Natl Acad Sci USA, 2010, 107:4623-4628. [7] Jansen RK, Saski C, Lee SB, et al. Complete plastid genome sequences of three Rosids(Castanea, Prunus, Theobroma):evidence for at least two independent transfers of rpl22 to the nucleus[J] . Mol Biol Evol, 2011, 28(1):835-847. [8] Weng ML, Ruhlman TA, Gibby M, et al. Phylogeny, rate variation, and genome size evolution of Pelargonium(Geraniaceae)[J] . Mol Phylogenet Evol, 2012, 64(3):654-670. [9] Zimmer EA, Wen J. Using nuclear gene data for plant phylogenetics:Progress and prospects II. Next-gen approaches[J] . Journal of Systematics and Evolution, 2015, 53(5):371-379. [10] Huang CH, Sun R, Hu Y, et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution[J] . Molecular Biology and Evolution, 2016, 33(2):394-412. [11] Zeng L, Zhang Q, Sun R, et al. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times[J] . Nature Communications, 2014, 5:4956. [12] Kagale S, Robinson SJ, Nixon J, et al. Polyploid evolution of the Brassicaceae during the Cenozoic era[J] . Plant Cell, 2014, 26(7):2777-2791. [13] Yang Y, Moore MJ, Brockington SF, et al. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing[J] . Molecular Biology and Evolution, 2015, 32(8):2001-2014. [14] Jiao Y, Wickett NJ, Ayyampalayam S, et al. Ancestral polyploidy in seed plants and angiosperms[J] . Nature, 2011, 473(7345):97-100. [15] Bowers JE, Chapman BA, Rong J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J] . Nature, 2003, 422(6930):433-438. [16] Barker MS, Vogel H, Schranz ME. Paleopolyploidy in the Brassicales:analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales[J] . Genome Biol Evol, 2009, 1:391-399. [17] Tang H, Bowers JE, Wang X, et al. Synteny and collinearity in plant genomes[J] . Science, 2008, 320(5875):486-488. [18] Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa[J] . Nat Genet, 2011, 43(10):1035-1039. [19] Xu G, Ma H, Nei M, et al. Evolution of F-box genes in plants:different modes of sequence divergence and their relationships with functional diversification[J] . Proc Natl Acad Sci USA, 2009, 106(3):835-840. [20] Fulton TM, Van der Hoeven R, Eannetta NT, et al. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants[J] . Plant Cell, 2002, 14(7):1457-1467. [21] Wu F, Mueller LA, Crouzillat D, et al. Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes(COSII)for comparative, evolutionary and systematic studies:a test case in the euasterid plant clade[J] . Genetics, 2006, 174(3):1407-1420. [22] Warwick SI, Al-Shehbaz IA, Sauder CA. Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema(Brassicaceae)based on sequences of nuclear ribosomal DNA[J] . Botany, 2006, 84(2):269-281. [23] Zhou TY, Lu LL, Yang G, et al. Brassicaceae(Cruciferae)[J] . Flora of China, 2001, 8:1-200. [24] Gong Q, Li P, Ma S, et al. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana[J] . Plant J, 2005, 44:826-839. [25] Amasino R. Floral induction and monocarpic versus polycarpic life histories[J] . Genome Biol, 2009, 10(7):228. [26] Dassanayake M, Oh DH, Haas JS, et al. The genome of the extremophile crucifer Thellungiella parvula[J] . Nat Genet, 2011, 43(9):913-918. [27] Hu TT, Pattyn P, Bakker EG, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change[J] . Nat Genet, 2011, 43(5):476-481. [28] Rushworth CA, Song BH, Lee CR, et al. Boechera, a model system for ecological genomics[J] . Mol Ecol, 2011, 20:4843-4857. [29] Wu HJ, Zhang Z, Wang JY, et al. Insights into salt tolerance from the genome of Thellungiella salsuginea[J] . Proc Natl Acad Sci USA, 2012, 109(30):12219-12224. [30] Slotte T, Hazzouri KM, Agren JA, et al. The Capsella rubella genome and the genomic consequences of rapid mating system evolution[J] . Nat Genet, 2013, 45(7):831-835. [31] Verbruggen N, Juraniec M, Baliardini C, et al. Tolerance to cadmium in plants:the special case of hyperaccumulators[J] . Biometals, 2013, 26(4):633-638. [32] Halimaa P, Blande D, Aarts MG, et al. Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens[J] . Front Plant Sci, 2014, 5:213. [33] Vekemans X, Poux C, Goubet PM, et al. The evolution of selfing from outcrossing ancestors in Brassicaceae:what have we learned from variation at the S-locus?[J] . J Evol Biol, 2014, 27(7):1372-1385. [34] Vision TJ, Brown DG, Tanksley SD. The origins of genomic duplications in Arabidopsis[J] . Science, 2000, 290(5499):2114-2117. [35] Simillion C, Vandepoele K, Van Montagu MC, et al. The hidden duplication past of Arabidopsis thaliana[J] . Proc Natl Acad Sci USA, 2002, 99(21):13627-13632. [36] Couvreur TL, Franzke A, Al-Shehbaz IA, et al. Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family(Brassicaceae)[J] . Mol Biol Evol, 2010, 27(1):55-71. [37] Edger PP, Heidel-Fischer HM, Bekaert M, et al. The butterfly plant arms-race escalated by gene and genome duplications[J] . Proc Natl Acad Sci USA, 2015, 112(27):8362-8366. [38] Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution[J] . Am J Bot, 2006, 93(4):607-619. [39] Franzke A, Lysak MA, Al-Shehbaz IA, et al. Cabbage family affairs:the evolutionary history of Brassicaceae[J] . Trends Plant Sci, 2011, 16(2):108-116. [40] Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J] . Nat Biotechnol, 2011, 29(7):644-652. [41] Pertea G, Huang X, Liang F, et al. TIGR Gene Indices clustering tools(TGICL):a software system for fast clustering of large EST datasets[J] . Bioinformatics, 2003, 19(5):651-652. [42] Li W, Godzik A. Cd-hit:a fast program for clustering and comparing large sets of protein or nucleotide sequences[J] . Bioinformatics, 2006, 22(13):1658-1659. [43] O'Brien KP, Remm M, Sonnhammer EL. Inparanoid:a comprehensive database of eukaryotic orthologs[J] . Nucleic Acids Res, 2005, 33(Database issue):476-480. [44] Li L, Stoeckert CJ, Roos DS. OrthoMCL:identification of ortholog groups for eukaryotic genomes[J] . Genome Res, 2003, 13(9):2178-2189. [45] Lee JY, Mummenhoff K, Bowman JL. Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae)[J] . Proc Natl Acad Sci USA, 2002, 99(26):16835-16840. [46] Qi J, Luo H, Hao B. CVTree:a phylogenetic tree reconstruction tool based on whole genomes[J] . Nucleic Acids Res, 2004, 32(Web Server issue):45-47. |