Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (2): 47-52.doi: 10.13560/j.cnki.biotech.bull.1985.2017.02.007
Previous Articles Next Articles
LIN Yi-hua1, ZHENG Tao1, GAO San-ji2, CHEN Zhen-dong1
Received:
2016-05-26
Online:
2017-02-26
Published:
2017-02-08
LIN Yi-hua, ZHENG Tao, GAO San-ji, CHEN Zhen-dong. Technology of Artificial microRNA and Its Application in Breeding Disease-resistant Plants[J]. Biotechnology Bulletin, 2017, 33(2): 47-52.
[1] Carrington JC, Ambros V. Role of microRNAs in plant and animal development[J]. Science, 2003, 301(5631):336-338. [2] Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233. [3] Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1[J]. Nature, 2004, 428(6978):81-84. [4] Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6):787-799. [5] Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J]. The Plant Cell, 2003, 15(11):2730-2741. [6] Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666):2022-2025. [7] Vaucheret H, Vazquez F, Crété P, et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development[J]. Genes & Development, 2004, 18(10):1187-1197. [8] Xie Q, Guo HS, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature, 2002, 419(6903):167-170. [9] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [10] Lagos-quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543):853-858. [11] Llave C, Kasschau KD, Rector MA, et al. Endogenous and silencing-associated small RNAs in plants[J]. The Plant Cell Online, 2002, 14(7):1605-1619. [12] Lu R, Martin-Hernandez AM, Peart JR, et al. Virus-induced gene silencing in plants[J]. Methods, 2003, 30:296-303. [13] 高鹏. 人工miRNA技术及其在植物中的应用研究进展[J]. 浙江农业学报, 2010, 22(3):393-397. [14] Schwab R, Ossowski S, Riester M, et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis[J]. The Plant Cell, 2006, 18(5):1121-1133. [15] Filipowicz W, Jaskiewicz L, Kolb A, et al. Post-transcriptional gene silencing by siRNAs and miRNAs[J]. Current Opinion in Structural Biology, 2005, 15(3):331-341. [16] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116:281-297. [17] Zuo J, Wang Y, Liu H, et al. MicroRNAs in tomato plants[J]. Science China Life Sciences, 2011, 54(7):599-605. [18] 杨曦, 何玉科. 植物microRNA 的生物合成和调控功能[J]. 生命科学, 2010(7):688-696. [19] Khraiwesh B, Arif MA, Seumel GI, et al. Transcriptional control of gene expression by microRNAs[J]. Cell, 2010, 140(1):111-122. [20] Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway[J]. Molecular Cell, 2010, 38(3):465-475. [21] Kumar R. Role of microRNAs in biotic and abiotic stress responses in crop plants[J]. Applied Biochemistry and Biotechnology, 2014, 174(1):93-115. [22] Voinnet O. Induction and suppression of RNA silencing:insights from viral infections[J]. Nature Reviews Genetics, 2005, 6:206-220. [23] Kawaguchi R, Girke T, Bray EA, et al. Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana[J]. Plant Journal, 2004, 38:823-839. [24] Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants[J]. Annual Review of Plant Biology, 2006, 57:19-53. [25] Chiou TJ, Aung K, Lin SI, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell, 2006, 18:412-421. [26] Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated gene silencing in plants:Progress and perspectives[J]. Plant Molecular Biology, 2014, 86(1/2):1-18. [27] Sablok G, Pérez-Quintero ÁL, Hassan M, et al. Artificial microRNAs(amiRNAs)engineering-On how microRNA-based silencing methods have affected current plant silencing research[J]. Biochemical and Biophysical Research Communications, 2011, 406(3):315-319. [28] Ai T, Zhang L, Gao Z, et al. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants[J]. Plant Biology, 2011, 13(2):304-316. [29] Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs[J]. The Plant Journal, 2008, 53(4):674-690. [30] Park W, Zhai J, Lee JY. Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes[J]. Plant Cell Reports, 2009, 28(3):469-480. [31] Parizotto EA, Dunoyer P, Rahm N, et al. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA[J]. Genes & Development, 2004, 18(18):2237-2242. [32] Alvarez JP, Pekker I, Goldshmidt A, et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species[J]. Plant Cell, 2006, 18:1134-1151. [33] Schwab R, Palatnik JF, Riester M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell, 2005, 8(4):517-527. [34] Niu QW, Lin SS, Reyes JL, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance[J]. Nature Biotechnology, 2006, 24(11):1420-1428. [35] Nour-Eldin HH, Hansen BG, Nørholm MHH, et al. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments[J]. Nucleic Acids Research, 2006, 34(18):e122. [36] Liu C, Zhang L, Sun J, et al. A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis[J]. Molecular Biology Reports, 2010, 37(2):903-909. [37] Kung YJ, Lin SS, Huang YL, et al. Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus[J]. Molecular Plant Pathology, 2012, 13(3):303-317. [38] Song YZ, Han QJ, Jiang F, et al. Effects of the sequence characteristics of miRNAs on multi-viral resistance mediated by single amiRNAs in transgenic tobacco[J]. Plant Physiology and Biochemistry, 2014, 77:90-98. [39] Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells[J]. Molecular Cell, 2002, 9(6):1327-1333. [40] Toppino L, Kooiker M, Lindner M, et al. Reversible male sterility in eggplant(Solanum melongena L.)by artificial microRNA-mediated silencing of general transcription factor genes[J]. Plant Biotechnology Journal, 2011, 9(6):684-692. [41] Warthmann N, Chen H, Ossowski S, et al. Highly specific gene silencing by artificial miRNAs in rice[J]. PLoS One, 2008, 3(3):e1829. [42] Wagaba H, Patil BL, Yadav JS, et al. Testing the efficacy of artificial microRNAs to control cassava brown streak disease[C]//Second RUFORUM Biennial Regional Conference on” Building capacity for food security in Africa”, Entebbe, Uganda, RUFORUM, 2010:287-291. [43] Peng JC, Chen TC, Raja JAJ, et al. Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level[J]. PLoS One, 2014, 9(5):e96073. [44] 黄军艳, 许李明, 张学江, 等. 人工microRNAs干扰At3A06基因增强了拟南芥对菌核病的敏感性[J]. 中国油料作物学报, 2010, 32(3):345-348. [45] Qu J, Ye J, Fang R. Artificial microRNA-mediated virus resistance in plants[J]. Journal of Virology, 2007, 81(12):6690-6699. [46] Zhang X, Li H, Zhang J, et al. Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner[J]. Transgenic Research, 2011, 20(3):569-581. [47] Lin SS, Wu HW, Elena SF, et al. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing[J]. PLoS Pathogens, 2009, 5(2):e1000312. [48] Simón-Mateo C, García JA. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism[J]. Journal of Virology, 2006, 80(5):2429-2436. [49] Duan CG, Wang CH, Fang RX, et al. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants[J]. Journal of Virology, 2008, 82(22):11084-11095. [50] Fedorov Y, Anderson EM, Birmingham A, et al. Off-target effects by siRNA can induce toxic phenotype[J]. RNA, 2006, 12(7):1188-1196. [51] 周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用[J]. 遗传, 2016, 38(3):227-242. |
[1] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[2] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[3] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[4] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[5] | CUI Ji-jie, CAI Wen-bo, ZHUANG Qing-hui, GAO Ai-ping, HUANG Jian-feng, CHEN Ya-hui, SONG Zhi-zhong. Biological Function of Gene MiISU1 for Fe-S Cluster Assembly in Mangifera indica [J]. Biotechnology Bulletin, 2023, 39(2): 139-146. |
[6] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[7] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[8] | WANG Chen-yu, ZHOU Chu-yuan, HE Di, FAN Zi-hao, WANG Meng-meng, YANG Liu-yan. Role and Mechanism of Polyphosphate in the Microbial Response to Environmental Stresses [J]. Biotechnology Bulletin, 2023, 39(11): 168-181. |
[9] | YAN Meng-yu, WEI Xiao-wei, CAO Jing, LAN Hai-yan. Cloning of Basic Helix-loop-helix(bHLH)Transcription Factor Gene SabHLH169 in Suaeda aralocaspica and Analysis of Its Resistances to Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 328-339. |
[10] | TAO Na, LI Mao-xing, GUO Hua-chun. Optimization of Sweet Potato Genetic Transformation System Mediated by Agrobacterium rhizogenes [J]. Biotechnology Bulletin, 2023, 39(10): 175-183. |
[11] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[12] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[13] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[14] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[15] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||