Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (5): 19-25.doi: 10.13560/j.cnki.biotech.bull.1985.2017.05.003
Previous Articles Next Articles
QIAO Yu1, YANG Shui-ying2, LI Zhen-lun1, WANG Fang2, XU Yi1
Received:
2016-11-14
Online:
2017-05-25
Published:
2017-05-19
QIAO Yu, YANG Shui-ying, LI Zhen-lun, WANG Fang, XU Yi. Research Progress on the Role of COP9 Signalosome in Growth,Development and Secondary Metabolism of Fungus[J]. Biotechnology Bulletin, 2017, 33(5): 19-25.
[1] Berovic M, Legisa M. Citric acid production[J]. Biotechnology Annual Review, 2007, 13:303-343. [2] Singh O V, Kumar R. Biotechnological production of gluconic acid:future implications[J]. Applied Microbiology and Biotechnology, 2007, 75(4):713-722. [3] Kobayashi T, Abe K, Asai K, et al. Genomics of Aspergillus oryzae[J]. Biosci Biotechnol Biochemi, 2007, 71(3):646-670. [4] Normile D. Spoiling for a fight with mold[J]. Science, 2010, 327(5967):807. [5] Wei N, Chamovitz DA, Deng XW. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development[J]. Cell, 1994, 78(1):117-124. [6] Schwechheimer C, Isono E. The COP9 signalosome and its role in plant development[J]. Eur J Cell Biol, 2010, 89:157-162. [7] Oren-Giladi P, Krieger O, Edgar B A, et al. Cop9 signalosome subunit 8(CSN8)is essential for Drosophila development[J]. Genes to Cells, 2008, 13(3):221-231. [8] Gummlich L, Rabien A, Jung K, et al. Deregulation of the COP9 signalosome-cullin-RING ubiquitin-ligase pathway:Mechanisms and roles in urological cancers[J]. International Journal of Biochemistry and Cell Biology, 2013, 45(7):1327-1337. [9] Schütz AK, Hennes T, Jumpertz S, et al. Role of CSN5/JAB1 in Wnt/β-catenin activation in colorectal cancer cells[J]. FEBS Lett, 2012, 586(11):1645-1651. [10] Hann R, Dubiel W. COP9 signalosome function in the DDR[J]. FEBS Lett, 2011, 585(18):2845-2852. [11] Chamovitz DA. Revisiting the COP9 signalosome as a transcriptio-nal regulator[J]. EMBO Reports, 2009, 10(4):352-358. [12] Su H, Huang W, Wang X. The COP9 signalosome negatively regulates proteasome proteolytic function and is essential to transcription[J]. Int J Biochem Cell Biol, 2009, 3:615-624. [13] Wei N, Serino G, Deng XW. The COP9 signalosome:more than a protease[J]. Trends Biochem Sci, 2008, 33(12):592-600. [14] Braus GH, Irniger S, Bayram Ö. Fungal development and the COP9 signalosome[J]. Curr Opin Microbiol, 2010, 13(6):672-676. [15] Nahlik K, Dumkow M, Bayram Ö, et al. The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxid-ative stress protection and cell wall rearrangement during fungal development[J]. Mol Microbiol, 2010, 78(4):964-979. [16] Licursi V, Salvi C, De Cesare V, et al. The COP9 signalosome is involved in the regulation of lipid metabolism and of transition metals uptake in Saccharomyces cerevisiae[J]. FEBS Journal, 2014, 281(1):175-190. [17] 李娜. 营养元素对烟草疫霉生长发育及硼对产孢期基因转录的影响[D]. 重庆:西南大学, 2014. [18] Pick E, Golan A, Zimbler JZ, et al. The minimal deneddylase core of the COP9 signalosome excludes the Csn6 MPN-domain[J]. PLoS One, 2012, 7(8):e43980. [19] Gerke J, Braus GH. Manipulation of fungal development as source of novel secondary metabolites for biotechnology[J]. Applied Microbiology and Biotechnology, 2014, 98(20):8443-8455. [20] Scheel H, Hofmann K. Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes[J]. BMC Bioinformatics, 2005, 6(1):71. [21] Cope GA, Suh GSB, Aravind L, et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1[J]. Science, 2002, 298(5593):608-611. [22] Zhang H, Gao ZQ, Wang W J, et al. The crystal structure of the MPN domain from the COP9 signalosome subunit CSN6[J]. FEBS Lett, 2012, 586(8):1147-1153. [23] Tsuge T, Matsui M, Wei N. The subunit 1 of the COP9 signalosome suppresses gene expression through its N-terminal domain and incorporates into the complex through the PCI domain[J]. Journal of Molecular Biology, 2001, 305(1):1-9. [24] Verma R, Aravind L, Oania R, et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome[J]. Science, 2002, 298(5593):611-615. [25] Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome[J]. Nature, 2002, 419(6905):403-407. [26] Pick E, Pintard L. In the land of the rising sun with the COP9 signalosome and related Zomes. Symposium on the COP9 signalosome, proteasome and eIF3[J]. EMBO Reports, 2009, 10(4):343-348. [27] Feldman RMR, Correll CC, et al. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p[J]. Cell, 1997, 91(2):221-230. [28] Skowyra D, Craig KL, Tyers M, et al. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex[J]. Cell, 1997, 91(2):209-219. [29] Kawakami T, Chiba T, et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase[J]. EMBO Journal, 2001, 20(15):4003-4012. [30] Sakata E, Yamaguchi Y, Miyauchi Y, et al. Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity[J]. Nature Structural and Molecular Biology, 2007, 14(2):167-168. [31] Wang J, Hu Q, Chen H, et al. Role of individual subunits of the Neurospora crassa CSN complex in regulation of deneddylation and stability of cullin proteins[J]. PLoS Genetics, 2010, 6(12):e1001232. [32] He Q, Cheng P, He Q, et al. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex[J]. Genes Dev, 2005a, 13:1518-1531. [33] He Q, Liu Y. Degradation of the Neurospora circadian clock protein frequency through the ubiquitin-proteasome pathway[J]. Biochemical Society Transactions, 2005b, 33(5):953-956. [34] Liu Y, Bell-Pedersen D. Circadian rhythms in Neurospora crassa and other filamentous fungi[J]. Eukaryotic Cell, 2006, 5(8):1184-1193. [35] Rodriguez-Romero J, Hedtke M, Kastner C, et al. Fungi, hidden in soil or up in the air:light makes a difference[J]. Microbiology, 2010, 64(1):585-610. [36] Bayram Ö, Braus GH, Fischer R, et al. Spotlight on Aspergillus nidulans photosensory systems[J]. Fungal Genetics and Biology, 2010, 47(11):900-908. [37] Busch S, Eckert SE, Krappmann S, et al. The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans[J]. Mol Microbiol, 2003, 3:717-730. [38] Bayram Ö, Krappmann S, Ni M, et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism[J]. Science, 2008, 320(5882):1504-1506. [39] Purschwitz J, Müller S, Fischer R. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB[J]. Molecular Genetics and Genomic, 2009, 281(1):35-42. [40] Tsitsigiannis DI, Zarnowski R, Keller NP. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans[J]. J Biol Chemi, 2004a, 279(12):11344-11353. [41] Tsitsigiannis DI, Kowieski TM, Zarnowski R, et al. Endogenous lipogenic regulators of spore balance in Aspergillus nidulans[J]. Eukaryotic Cell, 2004b, 3(6):1398-1411. [42] Tsitsigiannis DI, et al. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans[J]. Microbiology, 2005, 151(6):1809-1821. [43] Brodhun F, Feussner I. Oxylipins in fungi[J]. FEBS Journal, 2011, 278(7):1047-1063. [44] Bayram Ö, Braus GH. Coordination of secondary metabolism and development in fungi:the velvet family of regulatory proteins[J]. FEMS Microbiology Reviews, 2012, 36(1):1-24. [45] Skropeta D. Deep-sea natural products[J]. Natural Product Reports, 2008, 25(6):1131-1166. [46] Calvo AM, Wilson RA, Bok JW, et al. Relationship between secondary metabolism and fungal development[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3):447-459. [47] Yu JH, Keller N. Regulation of secondary metabolism in filament-ous fungi[J]. Annua Rev Phytopathol, 2005, 43:437-458. [48] Dohmann EMN, Nill C, et al. DELLA proteins restrain germination and elongation growth in Arabidopsis thaliana COP9 signalosome mutants[J]. Eur J Cell Biol, 2010, 89(2):163-168. [49] Hind SR, Pulliam SE, Veronese P, et al. The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens[J]. Plant Journal, 2011, 65(3):480-491. [50] Wang J, Yu Y, Zhang Z, et al. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis[J]. Plant Cell, 2013, 25(2):625-636. [51] Helmstaedt K, Schwier EU, et al. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site[J]. Mol Biol Cell, 2011, 22(1):153-164. [52] Min KW, Kwon MJ, Park HS, et al. CAND1 enhances deneddylation of CUL1 by COP9 signalosome[J]. Biochemical and Biophysical Research Communications, 2005, 334(3):867-874. [53] Gerke J, et al. Breaking the silence:protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidu-lans[J]. Appl Environ Microbiol, 2012, 78(23):8234-8244. [54] Suzuki T, Tanemura K, Okada C, et al. Synthesis of 7-acetyloxy-3, 7-dimethy1-7, 8-dihydro-6H-isochromene-6, 8-dione and its analogues[J]. Journal of Heterocyclic Chemistry, 2001, 38(6):1409-1418. [55] Osmanova N, Schultze W, Ayoub N. Azaphilones:a class of fungal metabolites with diverse biological activities[J]. Phytochemistry Reviews, 2010, 9(2):315-342. [56] Yasukawa K, Takahashi M, Natori S, et al. Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice[J]. Oncology, 1994, 1:108-112. [57] Mapari SAS, Thrane U, Meyer AS. Fungal polyketide azaphilone pigments as future natural food colorants?[J]. Trends in Biotechnology, 2010, 28(6):300-307. [58] Galagan JE, Calvo SE, Cuomo C, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae[J]. Nature, 2005, 438(7071):1105-1115. [59] Krappmann S, Jung N, Medic B, et al. The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis[J]. Molecular Microbiology, 2006, 61(1):76-88. [60] Georgianna DR, Payne GA. Genetic regulation of aflatoxin biosynthesis:from gene to genome[J]. Fungal Genetics & Biology, 2009, 46(2):113-125. |
[1] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[2] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[5] | FANG Lan, LI Yan-yan, JIANG Jian-wei, CHENG Sheng, SUN Zheng-xiang, ZHOU Yi. Isolation, Identification and Growth-promoting Characteristics of Endohyphal Bacterium 7-2H from Endophytic Fungi of Spiranthes sinensis [J]. Biotechnology Bulletin, 2023, 39(8): 272-282. |
[6] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[7] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[8] | XU Hong-Yun, LV Jun, YU Cun. Growth Promoting of Pinus massoniana Seedlings Regulated by Rhizosphere Phosphate-solubilizing Paraburkholderia spp. [J]. Biotechnology Bulletin, 2023, 39(6): 274-285. |
[9] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[10] | ZHENG Huan, LIN Dong-mei, LIU Jun-yuan, ZHANG Yin-lian, LIN Biao-sheng, LIN Zhan-xi, LI Jing. Analysis of Amino Acid Metabolism Difference Between Fruiting Body and Mycelium of Taiwanofungus camphoratus by LC-QTOF-MS Metabonomics [J]. Biotechnology Bulletin, 2023, 39(5): 254-266. |
[11] | CHE Yong-mei, GUO Yan-ping, LIU Guang-chao, YE Qing, LI Ya-hua, ZHAO Fang-gui, LIU Xin. Isolation and Identification of Bacterial Strain C8 and B4 and Their Halotolerant Growth-promoting Effects and Mechanisms [J]. Biotechnology Bulletin, 2023, 39(5): 276-285. |
[12] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[13] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[14] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[15] | LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants [J]. Biotechnology Bulletin, 2023, 39(4): 166-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||