Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (6): 211-220.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0993
Previous Articles Next Articles
HAN Zhi-ling1,2,3(), CHEN Qing2,3(), LIANG Xiao2,3, WU Chun-ling2,3, LIU Ying2,3, WU Mu-feng2,3, XU Xue-lian2
Received:
2021-08-06
Online:
2022-06-26
Published:
2022-07-11
Contact:
CHEN Qing
E-mail:hb18831321679@126.com;chqingztq@163.com
HAN Zhi-ling, CHEN Qing, LIANG Xiao, WU Chun-ling, LIU Ying, WU Mu-feng, XU Xue-lian. Influence on Expression of Jasmonic Acid Signaling Pathway Gene in Tetranychus urticae Fed on Mite-resistant and Mite-susceptible Cassava Cultivars[J]. Biotechnology Bulletin, 2022, 38(6): 211-220.
引物名称 Primer name | 基因登录号Gene ID | 序列Sequence(5'-3') | 退火温度Annealing temperature Tm/℃ | 产物大小Product size/bp |
---|---|---|---|---|
OPR3-F | MANES_03G039700 | GTTCACACCTCCAAGGCGA | 57.2 | 103 |
OPR3-R | AACTCCATCAAACCCAGCTT | 58.2 | ||
DAD1-F | MANES_01G274500 | AATGGGCCAATGGTGGAGAG | 57.5 | 118 |
DAD1-R | CACCGTACCTTTCCAGGACC | 59.5 | ||
JAR1-F | MANES_05G025500 | TCATCTACTACGCCCAAGTTTAAGA | 58.4 | 118 |
JAR1-R | CCATCTCAGCGCCCTTTGTA | 58.5 | ||
LOX2-F | MANES_10G148800 | GCCATGGAAACACTTCTTGCT | 55.9 | 297 |
LOX2-R | CTAGCCCCGTTTTGGGATCA | 57.6 | ||
MeTub-F | MANES_18G123607 | ATGTTGAGTTCAATATGCAGATCC | 58.1 | 154 |
MeTub-R | CCCAGAACTTGGCTCCGATT | 61.7 |
Table 1 qPCR primers for the the expression analysis of jasmonic acid(JA)pathway genes in cassava
引物名称 Primer name | 基因登录号Gene ID | 序列Sequence(5'-3') | 退火温度Annealing temperature Tm/℃ | 产物大小Product size/bp |
---|---|---|---|---|
OPR3-F | MANES_03G039700 | GTTCACACCTCCAAGGCGA | 57.2 | 103 |
OPR3-R | AACTCCATCAAACCCAGCTT | 58.2 | ||
DAD1-F | MANES_01G274500 | AATGGGCCAATGGTGGAGAG | 57.5 | 118 |
DAD1-R | CACCGTACCTTTCCAGGACC | 59.5 | ||
JAR1-F | MANES_05G025500 | TCATCTACTACGCCCAAGTTTAAGA | 58.4 | 118 |
JAR1-R | CCATCTCAGCGCCCTTTGTA | 58.5 | ||
LOX2-F | MANES_10G148800 | GCCATGGAAACACTTCTTGCT | 55.9 | 297 |
LOX2-R | CTAGCCCCGTTTTGGGATCA | 57.6 | ||
MeTub-F | MANES_18G123607 | ATGTTGAGTTCAATATGCAGATCC | 58.1 | 154 |
MeTub-R | CCCAGAACTTGGCTCCGATT | 61.7 |
Fig. 1 Relative transcriptions of OPR3 gene in mite-resis-tant and mite-susceptible cassava cultivars after infested by mites of different densities at different time A:C1115. B:Mianbao. C:C1115 vs Mianbao. Different lowercase letters indicate that there are significant differences in transcription of OPR3 when cassava was infested by mites of different densities at the same time(P<0.05),and different capital letters indicate there are significant differences in transcription of OPR3 when cassava were infested by the mites of the same densities at different time(P < 0.05). The same below
Fig. 2 Relative transcriptions of LOX2 gene in mite-resistant and mite-susceptible cassava cultivars after infested by the mites of different densities at different time
Fig. 3 Relative transcriptions of DAD1 gene in mite-resistant and mite-susceptible cassava cultivars after infested by the mites of different densities at different time
Fig. 4 Relative transcriptions of JAR1 gene in mite-resistant and mite-susceptible cassava cultivars after infested by the mites of different densities at different time
[1] | 朱柏光, 李闯, 张雪娇, 等. 木薯MeSWEET3b的基因克隆及功能分析[J]. 分子植物育种, 2022, 20(3):733-741. |
Zhu BG, Li C, Zhang XJ, et al. Molecular cloning and function analysis of a MeSWEET3b gene from Manihot esculenta[J]. Mol Plant Breed, 2022, 20(3):733-741. | |
[2] |
Hu W, Ji C, Shi H, et al. Allele-defined genome reveals biallelic differentiation during cassava evolution[J]. Mol Plant, 2021, 14(6):851-854.
doi: 10.1016/j.molp.2021.04.009 URL |
[3] | 张哲, 陈青, 梁晓, 等. 朱砂叶螨为害前后抗、感木薯品种叶组织营养物质含量差异分析[J]. 热带作物学报, 2020, 41(9):1865-1869. |
Zhang Z, Chen Q, Liang X, et al. Analysis on difference of nutrient content in leaf tissue of resistant and sensitive cassava varieties before and after damage to Tetranychus cinnabarinus[J]. Chin J Trop Crops, 2020, 41(9):1865-1869. | |
[4] | 肖鑫辉, 叶剑秋, 王明, 等. 木薯种质资源淀粉特性分析与评价[J]. 热带作物学报, 2021, 42(2):339-348. |
Xiao XH, Ye JQ, Wang M, et al. Analysis on starch properties in cassava germplasm resources[J]. Chin J Trop Crops, 2021, 42(2):339-348. | |
[5] | 杨丹. 海南木薯产业发展与影响因素实证分析[D]. 海口: 海南大学, 2017. |
Yang D. An empirical study on the development and effect factors of Hainan cassava industry[D]. Haikou: Hainan University, 2017. | |
[6] | 王国芬, 李超萍, 时涛, 等. 我国木薯花叶病毒病的发生危害及其病原鉴定[J]. 热带作物学报, 2021, 42(6):1668-1677. |
Wang GF, Li CP, Shi T, et al. Distribution and pathogen detection of cassava mosaic virus disease in China[J]. Chin J Trop Crops, 2021, 42(6):1668-1677. | |
[7] | 金晶, 杨顺义, 尚素琴, 等. 苦参碱对二斑叶螨解毒酶活力的影响[J]. 草原与草坪, 2020, 40(6):89-94. |
Jin J, Yang SY, Shang SQ, et al. The effect of matrine on detoxification enzymes in Tetranychus urticae[J]. Grassland Turf, 2020, 40(6):89-94. | |
[8] | 胡展育, 郅军锐. 二斑叶螨的研究进展[J]. 山地农业生物学报, 2004, 23(5):442-447. |
Hu ZY, Zhi JR. Review of the researches on Tetranychus urticae Koch[J]. J Mt Agric Biol, 2004, 23(5):442-447. | |
[9] |
Chen Q, Liang X, Wu C, et al. Density threshold-based acaricide application for the two-spotted spider mite Tetranychus urticae on cassava:from laboratory to the field[J]. Pest Manag Sci, 2019, 75(10):2634-2641.
doi: 10.1002/ps.5366 URL |
[10] | 王莹, 杨开选, 周爱英. 大棚冬枣二斑叶螨的发生与防治[J]. 陕西林业科技, 2019, 47(4):71-72, 75. |
Wang Y, Yang KX, Zhou AY. Control of Tetranychus urticae infecting Zizyphus jujube cv. Dongzao in greenhouse[J]. Shaanxi For Sci Technol, 2019, 47(4):71-72, 75. | |
[11] | 蒋立奔, 曹荣祥, 童晓利, 等. 不同杀螨剂对二斑叶螨的室内毒力及田间防效[J]. 江苏农业科学, 2019, 47(23):116-118. |
Jiang LB, Cao RX, Tong XL, et al. Indoor toxicity test and field efficacy of different acaricides against Tetranychus urticae Koch[J]. Jiangsu Agric Sci, 2019, 47(23):116-118. | |
[12] | 刘艳潇, 祝一鸣, 周而勋. 植物免疫诱抗剂的作用机理和应用研究进展[J]. 分子植物育种, 2020, 18(3):1020-1026. |
Liu YX, Zhu YM, Zhou EX. Research progress on the action mechanism and application of plant immune inducers[J]. Mol Plant Breed, 2020, 18(3):1020-1026. | |
[13] | 张杰, 董莎萌, 王伟, 等. 植物免疫研究与抗病虫绿色防控:进展、机遇与挑战[J]. 中国科学:生命科学, 2019, 49(11):1479-1507. |
Zhang j, Dong SM, Wang W, et al. Plant immunity and sustainable control of pests in China:Advances, opportunities and challenges[J]. Sci Sin:Vitae, 2019, 49(11):1479-1507. | |
[14] | 唐威华, 冷冰, 何祖华. 植物抗病虫与抗逆[J]. 植物生理学报, 2017, 53(8):1333-1336. |
Tang WH, Leng B, He ZH. Biotic and abiotic stress resistance in plants[J]. Plant Physiol J, 2017, 53(8):1333-1336. | |
[15] | 黄俊, 王帅, 张云川, 等. 植物激素茉莉酸调控天然橡胶合成的研究进展[J]. 植物生理学报, 2020, 56(4):654-660. |
Huang J, Wang S, Zhang YC, et al. Advances in the regulation of natural rubber synthesis by the phytohormone jasmonic acid[J]. Plant Physiol J, 2020, 56(4):654-660. | |
[16] | 焦龙, 蔡晓明, 边磊, 等. 茉莉酸类化合物:从植物的诱导抗虫防御反应到生长-防御权衡[J]. 应用生态学报, 2018, 29(11):3876-3890. |
Jiao L, Cai XM, Bian L, et al. Jasmonates:From induced plant anti-herbivore defensive reaction to growth-defense tradeoffs[J]. Chin J Appl Ecol, 2018, 29(11):3876-3890. | |
[17] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学, 2019, 49(10):1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin:Vitae, 2019, 49(10):1227-1281. | |
[18] | 段龙飞. 茉莉酸信号途径上关键基因家族COI/JAZ/MYC分子进化分析[D]. 杨凌: 西北农林科技大学, 2013. |
Duan LF. Molecular evolutionary analysis of the key gene families COI/JAZ/MYC in jasmonic acid signaling pathway[D]. Yangling: Northwest A & F University, 2013. | |
[19] | 范东哲, 陈青, 梁晓, 等. 桃蚜取食对抗、感蚜辣椒品种水杨酸、茉莉酸信号途径的影响[J]. 热带作物学报, 2021, 42(10):2972-2978. |
Fan DZ, Chen Q, Liang X, et al. Myzus persicae feeding affects salicylic acid and jasmonic acid signaling pathways in aphid-resistant and aphid-susceptible pepper cultivars[J]. Chin J Trop Crops, 2021, 42(10):2972-2978. | |
[20] | 崔伟康, 杨鹏, 廉法卓, 等. 茉莉酸信号转导途径介导番茄对棉铃虫的抗性[J]. 福建农林大学学报:自然科学版, 2016, 45(4):371-375. |
Cui WK, Yang P, Lian FZ, et al. Jasmonate signaling pathway mediates tomato resistance against Helicoverpa armigera[J]. J Fujian Agric For Univ:Nat Sci Ed, 2016, 45(4):371-375. | |
[21] | 冯建雄, 常静, 李海平, 等. 外源茉莉酸诱导对油菜防御酶活性和4种物质含量及植株生长的影响[J]. 植物保护, 2021, 47(1):128-134, 187. |
Feng JX, Chang J, Li HP, et al. Effects of exogenous jasmonic acid on the activities of defense enzymes, the contents of four substances and the growth of rape[J]. Plant Prot, 2021, 47(1):128-134, 187. | |
[22] | 冯建雄. 外源茉莉酸对3种油菜幼苗的诱导防御反应[D]. 呼和浩特: 内蒙古农业大学, 2019. |
Feng JX. Defense responses of 3 rape seedling leaves induced by exogenous jasmonic acid[D]. Hohhot: Inner Mongolia Agricultural University, 2019. | |
[23] | 张晓霞, 洪波, 景亮亮, 等. 外源茉莉酸甲酯诱导番茄对烟粉虱的抗虫性[J]. 生态学杂志, 2020, 39(11):3651-3657. |
Zhang XX, Hong B, Jing LL, et al. Insect resistance of tomato induced by exogenous methyl jasmonate to Bemisia tabaci[J]. Chin J Ecol, 2020, 39(11):3651-3657. | |
[24] | 张蕊蕊. 媒介虫口密度、植株苗龄及温度对烟粉虱传播台湾番茄曲叶病毒的影响[D]. 杭州: 浙江大学, 2011. |
Zhang RR. Effect of vector density, plant age and temperature on the transmission of tomato leaf curl Taiwan virus by the whitefly Bemisia tabaci[D]. Hangzhou: Zhejiang University, 2011. | |
[25] | 马雯, 何云川, 王新谱. 不同虫口密度Q型烟粉虱成虫对番茄幼苗生理指标的影响[J]. 农业科学研究, 2020, 41(3):7-11. |
Ma W, He YC, Wang XP. Effects of Bemisia tabaci Q-type feeding on physiological index of Solanum lycopersicum under different population densities[J]. J Agric Sci, 2020, 41(3):7-11. | |
[26] | 任倩倩. 抗、感茶树品种对茶小绿叶蝉取食诱导的防御反应[D]. 福州: 福建农林大学, 2020. |
Ren QQ. The defense strategies of resistant and susceptible tea cultivars in response to Empoasca onukii feeding[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. | |
[27] | 赵文娟, 夏爽, 郑薇薇, 等. 益害比及花粉存在对江原钝绥螨和柑橘全爪螨种群动态的影响[J]. 植物保护, 2021, 47(1):148-152. |
Zhao WJ, Xia S, Zheng WW, et al. Effects of predatory mite-pest mite ratio and pollen presence on population dynamics of Amblyseius eharai and Panonychus citri[J]. Plant Prot, 2021, 47(1):148-152. | |
[28] | 李红, 陈鑫, 许艺, 等. 益生菌EG-2#不同浓度处理对辣椒苗期生长发育的影响研究[J]. 四川农业科技, 2020(8):14-15. |
Li H, Chen X, Xu Y, et al. Effects of probiotic eg-2# different concentrations on the growth and development of pepper seedlings[J]. Sichuan Agric Sci Technol, 2020(8):14-15. | |
[29] | 李迁, 卢芙萍, 陈青, 等. 木薯种质对朱砂叶螨的抗性评价[J]. 热带作物学报, 2015, 36(1):143-151. |
Li Q, Lu FP, Chen Q, et al. Evaluation of cassava germplasms for resistance to spider mite Tetranychus cinnabarinus(Acari:Tetranychidae)[J]. Chin J Trop Crops, 2015, 36(1):143-151. | |
[30] | 周兴隆, 杨顺义, 郝雨, 等. 二斑叶螨多重抗性品系最优内参基因的筛选及CYP392A亚家族基因的表达分析[J]. 昆虫学报, 2015, 58(11):1229-1236. |
Zhou XL, Yang SY, Hao Y, et al. Selection of the most suitable reference genes and expression profiling of CYP392A subfamily genes in the multi-pesticide resistant strain of Tetranychus urticae(Acari:Tetranychidae)[J]. Acta Entomol Sin, 2015, 58(11):1229-1236. | |
[31] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[32] | 宋云, 李林宣, 卓凤萍, 等. 茉莉酸信号传导在植物抗逆性方面研究进展[J]. 中国农业科技导报, 2015, 17(2):17-24. |
Song Y, Li LX, Zhuo FP, et al. Progress on jasmonic acid signaling in plant stress resistant[J]. J Agric Sci Technol, 2015, 17(2):17-24. | |
[33] |
Yates-Stewart AD, Pekarcik A, Michel A, et al. Jasmonic acid-isoleucine(ja-ile)is involved in the host-plant resistance mechanism against the soybean aphid(hemiptera:Aphididae)[J]. J Econ Entomol, 2020, 113(6):2972-2978.
doi: 10.1093/jee/toaa221 pmid: 33033836 |
[34] | 刘庆霞, 李梦莎, 国静. 茉莉酸生物合成的调控及其信号通路[J]. 植物生理学报, 2012, 48(9):837-844. |
Liu QX, Li MS, Guo J. Regulation of jasmonic acid biosynthesis and jasmonic acid signaling pathway[J]. Plant Physiol J, 2012, 48(9):837-844. | |
[35] | 王文艳. 葡萄水杨酸和茉莉酸信号转导途径中4个重要基因的克隆及表达分析[D]. 南京: 南京农业大学, 2011. |
Wang WY. Cloning and expression analysis of four important grapevine genes involved in sa and ja signalling pathways[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[36] | 张镇川, 何冰, 李甜, 等. 冠菌素对番茄防御基因表达、胼胝质沉积及细菌生长的影响[J]. 四川农业大学学报, 2021, 39(1):27-34. |
Zhang ZC, He B, Li T, et al. The effect of coronatine on tomato defense gene expression, callose deposition and bacterial growth[J]. J Sichuan Agric Univ, 2021, 39(1):27-34. | |
[37] |
韦晓霞, 王小安, 陈瑾, 等. 百香果低温胁迫转录组及茉莉酸代谢基因分析[J]. 核农学报, 2021, 35(4):815-825.
doi: 10.11869/j.issn.100-8551.2021.04.0815 |
Wei XX, Wang XA, Chen J, et al. Transcriptome and jasmin metabolism gene analysis of Passiflora edulia Sims under low temperature stress[J]. J Nucl Agric Sci, 2021, 35(4):815-825. | |
[38] | 彭淑萍, 董诚明, 朱畇昊. 响应内生菌侵染的两个地黄茉莉酸合成关键基因的克隆与表达分析[J]. 植物研究, 2021, 41(2):294-301. |
Peng SP, Dong CM, Zhu YH. Cloning and expression analysis of two key genes of jasmonic acid synthesis in response to endophytic infection from Rehmannia glutinosa[J]. Bull Bot Res, 2021, 41(2):294-301. | |
[39] | 贾庆利. 辣椒与黄瓜抗疫病相关基因克隆及分析[D]. 杨凌: 西北农林科技大学, 2012. |
Jia QL. Cloning and analysis of Phytophthora blight resistance-rjelated genes in pepper and cucumber[D]. Yangling: Northwest A & F University, 2012. | |
[40] | 郭航. 茄子茉莉酸生物合成途径相关基因的克隆与表达分析[D]. 重庆: 西南大学, 2015. |
Guo H. Cloning and expression analysisi of jasmonic acid biosynthesis pathway genes in Solanum melongena L[D]. Chongqing: Southwest University, 2015. | |
[41] | 牟艺菲. 小麦OPR和LOX基因家族的鉴定及其抗逆功能分析[D]. 杨凌: 西北农林科技大学, 2019. |
Mou YF. Identification and functional analysis of wheat OPR and LOX gene families in response to stresses[D]. Yangling: Northwest A & F University, 2019. | |
[42] | 陈慧. 茶树被茶尺蠖取食诱导的一个13-脂氧合酶基因的分离、功能鉴定与表达分析[D]. 合肥: 安徽农业大学, 2011. |
Chen H. Identification and characterization of a herbivore-induced lipoxygenase gene in the leaves of Camellia sinensis fed by Ectropis obliqua[D]. Hefei: Anhui Agricultural University, 2011. | |
[43] | 乔菊香, 吴嘉, 张国斌, 等. 拟南芥茉莉酸信号途径突变体jar1的灰葡萄孢菌抗性分析[J]. 分子植物育种, 2020, 18(12):4009-4013. |
Qiao JX, Wu J, Zhang GB, et al. Resistant analysis of jasmonic acid signaling mutant jar1 to Botrytis cinerea in Arabidopsis[J]. Mol Plant Breed, 2020, 18(12):4009-4013. | |
[44] |
Guo HM, Li HC, Zhou SR, et al. Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect[J]. Mol Plant, 2014, 7(11):1683-1692.
doi: 10.1093/mp/ssu098 URL |
[45] | 张海波. 烟粉虱Bemisia tabaci(Gennadius)取食及外源JA处理对辣椒(Capisicum annuum L.)内源JA、SA的影响[D]. 扬州: 扬州大学, 2018. |
Zhang HB. Effects of Bemisia tabaci(Gennadius)feeding and exogenous JA treatment on endogenous JA and SA of Capsicum annuum L.[D]. Yangzhou: Yangzhou University, 2018. | |
[46] | 张羽宇. 西花蓟马取食对菜豆植株系统抗性的诱导[D]. 贵阳: 贵州大学, 2017. |
Zhang YY. The systemic resistance of the kidney bean induced by Frankliniella occidentalis(Pergande)(Thysanoptera:Thripidae)[D]. Guiyang: Guizhou University, 2017. | |
[47] | 刘勇. 钙素在西花蓟马取食诱导菜豆防御反应中的作用[D]. 贵阳: 贵州大学, 2016. |
Liu Y. The role of calcium in kidney bean defensive responses induced by western flower thrip feeding[D]. Guiyang: Guizhou University, 2016. |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[3] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[4] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[5] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[6] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[7] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[8] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[9] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[10] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[11] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[12] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[13] | YUAN Xing, GUO Cai-hua, LIU Jin-ming, KANG Chao, QUAN Shao-wen, NIU Jian-xin. Genome-wide Identification of CONSTANS-Like Family Genes and Expression Analysis in Wanlut [J]. Biotechnology Bulletin, 2022, 38(9): 167-179. |
[14] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
[15] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||