[1] Glick BR, Karaturovíc DM, Newell PC. A novel procedure for the rapid isolation of plant growth-promoting Pseudomonas[J] . Canadian Journal of Microbiology, 1995, 41(6):533-536. [2] Albano LJ, Macfie SM. Investigating the ability of Pseudomonas fluorescens UW4 to reduce cadmium stress in Lactuca sativa via an intervention in the ethylene biosynthetic pathway[J] . Canadian Journal of Microbiology, 2016, 62(12):1057-1062. [3] Nadeem SM, Zahir ZA, Naveed M, et al. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields[J] . Can J Microbiol, 2009, 55(11):1302-1309. [4] Ahmad M, Zahir ZA, Asghar HN, et al. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase[J] . Canadian Journal of Microbiology, 2011, 57(7):578-589. [5] Manikandan R, Raguchander T. Fusarium oxysporum f. sp. lycopersici retardation through induction of defensive response in tomato plants using a liquid formulation of Pseudomonas fluorescens(Pf1)[J] . Eur J Plant Pathol, 2014, 140(3):469-480. [6] Khan MR, Anwer MA, Shahid S. Management of gray mold of chickpea, Botrytis cinerea with bacterial and fungal biopesticides using different modes of inoculation and application[J] . Biological Control, 2011, 57(1):13-23. [7] 张书景, 李坚, 李依丽, 等. 恶臭假单胞菌生物滴滤塔净化甲苯废气的研究[J] . 环境科学, 2007, 28(8):1866-1872. [8] Mishra S, Singh SN. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes[J] . Bioresource Technology, 2012, 111:148-154. [9] Shi GY, Yin H, Ye JS, et al. Aerobic biotransformation of decabromodiphenyl ether(PBDE-209)by Pseudomonas aeruginosa[J] . Chemosphere, 2013, 93(8):1487-1493. [10] Srivastava AK, Singh T, et al. Induced resistance and control of charcoal rot in Cicer arietinum(chickpea)by Pseudomonas fluorescens[J] . Can J Bot, 2001, 79(7):787-795. [11] 朱希坤, 彭湃, 李小明, 等. 假单胞菌及其用途:中国, CN201410665101. 0[P] . 2015-02-18. [12] Palmfeldt J, R?dstr?m P, Hahn-H?gerda B. Optimisation of initial cell concentration enhances freeze-drying tolerance of Pseudomonas chlororaphis[J] . Cryobiology, 2003, 47(1):21-29. [13] Costa E, Usall J, Teixido N, et al. Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freezedrying[J] . Journal of Applied Microbiology, 2006, 89(5):793-800. [14] Clement MT. Effects of freezing, freeze-drying, and storage in the freeze-dried and frozen state on Viability of Escherichia coli Cells[J] . Can J Microbiol, 1961, 7(1):99-106. [15] Stephan D, Silva APMD, Bisutti IL. Optimization of a freeze-drying process for the biocontrol agent Pseudomonas sp. and its influence on viability, storability and efficacy[J] . Biological Control, 2016, 94:74-81. [16] Souzu H. Basic aspects and industrial strategies for the preservation of microorganisms by freezing and drying in “Freeze-drying/lyophilization of pharmaceutical and biological products”[M] . New York:Marcel Dekker, 1999, 22-35. [17] Prakash O, Nimonkar Y, et al. Practice and prospects of microbial preservation[J] . FEMS Microbiol Lett, 2013, 339(1):1-9. [18] Hubálek Z. Protectants used in the crypreservation of microorganisms[J] . Cryobiology, 2003, 46(3):205-229. [19] 山丽杰, 田洪涛, 等. 浓缩型乳酸菌发酵剂制备中几个技术关键问题的探讨[J] . 中国乳品工业, 2002, 30(5):66-69. |