[1]Robertson GP, Dale VH, Doering OC, et al. Agriculture. Sustainable biofuels redux[J]. Science, 2008, 322(5898):49-50. [2]Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311:484-489. [3]Svetlichnyi VA, Svetlichnaya TP, Chernykh NA, et al. Anaerocellum thermophilum gen. nov. sp. nov. :an extremely thermophilic cellulolytic eubacterium isolated from hot springs in the valley of geysers[J]. Mikrobiologiya, 1990, 59:598-603. [4]Zverlov V, Mahr S, Riedel K, et al. Properties and gene structure of a bifunctional cellulolytic enzyme(CelA)from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains[J]. Microbiology, 1998, 144(Pt 2):457-465. [5]Yang SJ, Kataeva I, Hamilton-Brehm SD, et al. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe“Anaerocellum thermophilum”DSM 6725[J]. Appl Environ Microbiol, 2009, 75:4762-4769. [6]Yang SJ, Kataeva I, Wiegel J, et al. Classification of‘Anaerocellum thermophilum’ strain DSM 6725 as Caldicellulosiruptor bescii sp. nov[J]. Int J Syst Evol Microbiol, 2010, 60:2011-2015. [7] Kataeva IA, Yang SJ, Dam P, et al. Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725[J]. J Bacteriol, 2009, 191:3760-3761. [8]Dam P, Kataeva I, Yang SJ, et al. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725[J]. Nucleic Acids Research, 2011, 39:3240-3254. [9] Blumer-Schuette SE, Lewis DL, Kelly RM. Phylogenetic, microbio-logical, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor[J]. Appl Environm Microbiol, 2010, 76:8084-8092. [10]Blumer-Schuette SE, Giannone RJ, Zurawski JV, et al. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass[J]. Journal of bacteriology, 2012, 194:4015-4028. [11]Olson DG, Tripathi SA, Giannone RJ, et al. Deletion of the Cel48S cellulase from Clostridium thermocellum[J]. Proc Natl Acad Sci USA, 2010, 107:17727-17732. [12]Su X, Mackie RI, Cann IK. Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii[J]. Appl Environm Microbiol, 2012, 78:2230-2240. [13]Yi Z, Su X, Revindran V, et al. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose[J]. PLoS One, 2013, 8:e84172. [14]Velikodvorskaya GA, Chekanovskaya LA, Lunina NA, et al. Family 28 carbohydrate-binding module of the thermostable endo-1, 4-beta-glucanase CelD from Caldicellulosiruptor bescii maximizes enzyme activity and irreversibly binds to amorphous cellulose[J]. Mol Biol, 2013, 47:581-586. [15]Ye L, Su X, Schmitz GE, et al. Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii[J]. Appl Environ Microbiol, 2012, 78:7048-7059. [16]Su X, Zhang J, Mackie RI, et al. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass[J]. PLoS One, 2012, 7:e43828. [17]Araki R, Karita S, Tanaka A, et al. Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70:3039-3041. [18]Su X, Han Y, Dodd D, et al. Reconstitution of a thermostable xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii[J]. Appl Environ Microbiol, 2013, 79:1481-1490. [19] Xue X, Wang R, Tu T, et al. The N-terminal GH10 comain of a multimodular protein from Caldicellulosiruptor bescii is a versatile xylanase/beta-glucanase that can degrade crystalline cellulose[J]. Appl Environm Microbiol, 2015, 81:3823-3833. [20]Lochner A, Giannone RJ, Rodriguez M Jr, et al. Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis[J]. Appl Environ Microbiol, 2011, 77:4042-4054. [21]Liang D, Gong L, Yao B, et al. Implication of a galactomannan-binding GH2 beta-mannosidase in mannan utilization by Caldicellulosiruptor bescii[J]. Biochemical and Biophysical Research Communications, 2015, 467:334-340. [22]Chen W, Supanwong K, Ohmiya K, et al. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria[J]. Appl Environ Microbiol, 1985, 50:1451-1456. [23] Chen W, Ohmiya K, Shimizu S, et al. Degradation of dehydrodivani-llin by anaerobic bacteria from cow rumen fluid[J]. Appl Envi-ron Microbiol, 1985, 49:211-216. [24]Tanamura K, Abe T, Kamimura N, et al. Characterization of the third glutathione S-transferase gene involved in enantioselective cleavage of the beta-aryl ether by Sphingobium sp. strain SYK-6[J]. Biosci Biotechnol Biochem, 2011, 75:2404-2407. [25]Reiter J, Strittmatter H, Wiemann LO, et al. Enzymatic cleavage of lignin beta-O-4 aryl ether bonds via net internal hydrogen transfer[J]. Green Chem, 2013, 15:1373-1381. [26]Kataeva I, Foston MB, Yang SJ, et al. Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature[J]. Energ Environ Sci, 2013, 6:2186-2195. [27]Brunecky R, Alahuhta M, Xu Q, et al. Revealing nature’s cellulase diversity:the digestion mechanism of Caldicellulosiruptor bescii CelA[J]. Science, 2013, 342:1513-1516. [28]An J, Xie Y, Zhang Y, et al. Characterization of a thermostable, specific GH10 xylanase from Caldicellulosiruptor bescii with high catalytic activity[J]. J Mol Catal B-Enzym, 2015, 117:13-20. [29]McKee LS, Pena MJ, Rogowski A, et al. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains[J]. Proc Natl Acad Sci USA, 2012, 109:6537-6542. [30]Yokoyama H, Yamashita T, Morioka R, et al. Extracellular secretion of noncatalytic plant cell wall-binding proteins by the cellulolytic thermophile Caldicellulosiruptor bescii[J]. Journal of Bacteriology, 2014, 196:3784-3792. [31]Blumer-Schuette SE, Alahuhta M, Conway JM, et al. Discrete and structurally unique proteins(tapirins)mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose[J]. J Biol Chem, 2015, 290:10645-10656. |