Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (10): 234-244.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0116
Previous Articles Next Articles
HU Fang1,2(), DONG Xu1, SHI Chang-wei1, WU Xue-dong1
Received:
2021-01-28
Online:
2021-10-26
Published:
2021-11-12
Contact:
HU Fang
E-mail:fangh16@163.com
HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose[J]. Biotechnology Bulletin, 2021, 37(10): 234-244.
强化途径 Intensification approch | 原料 Materials | 超声波参数 Ultrasonic parameters | 主要影响 Main effects | 文献Reference |
---|---|---|---|---|
超声波预处理酶-底物 Ultrasound pretreatment of enzyme-substrate | 甘蔗渣 Sugarcane bagasse | 150.7 W/cm2、20 kHz | 还原糖浓度达到对照样的1.9倍 Concentration of reducing sugar was 1.9 times of the control | [1] |
超声波强化糖化 Ultrasound intensification of saccharification | 旧报纸Old newspaper | 60 W、20 kHz、占空比70% 60 W、20 kHz、70% duty cycle | 还原糖浓度达到对照样的2.4倍 Concentration of reducing sugar was 2.4 times of the control | [17] |
花生壳、椰子壳和开心果壳 Groundnut shells, coconut coir and pistachio shells | 80 W、20 kHz、占空比70% 80 W、20kHz、70% duty cycle | 还原糖产量达到对照样的2倍 Concentration of reducing sugar was double of the control | [18] | |
玉米芯Corncob | 280 W和500 W、20 kHz、占空比50%、 280 W and 500 W、20 kHz、50% duty cycle | 葡聚糖消化率分别提高75.6%和58.9% Glucan digestibilities were increased 75.6% and 58.9%, respectively | [19] | |
稻草Rice straw | 300 W、40 kHz | 总还原糖产率增加19.5% Yield of total reducing sugar with ultrasound increased by 19.5% | [20] | |
银胶菊Parthenium hysterophorus | 35 W、35 kHz、占空比10% 35 W、35 kHz、10% duty cycle | 酶解动力学提高6倍,总还原糖产量增加约20% Kinetics of hydrolysis showed a marked 6× increase with sonication, while total reducing sugar yield showed rise of 20% | [21] | |
银胶菊Parthenium hysterophorus | 35 W、35 kHz、占空比50% 35 W、35 kHz、50% duty cycle | 酶解动力学提高18倍,酶解时间从72 h减少到仅4 h 18-fold increase in the kinetics of enzymatic hydrolysis was seen with ultrasound, and the hydrolysis time reduced from 72 h to just 4 h | [22] | |
甜根子草、薇甘菊、马缨丹和凤眼莲 Saccharum spontaneum, Mikania micrantha, Lantana camara and Eichhornia crassipes) | 35 W、35 kHz、占空比为10% 35 W、35 kHz、10% duty cycle | 酶解动力学提高近10倍 Kinetics of enzymatic hydrolysis increased by 10-fold | [23] | |
玉米秸秆Corn stover | 80 W、20 kHz | 催化效率提高约70% Catalytic efficiency of cellulase increased by 70% | [24] | |
甘蔗渣Sugarcane bagasse | 132 W、40 kHz | 提高葡萄糖产量 Yield of glucose increased | [25] | |
甘蔗渣Sugarcane bagasse | 240 W、24 kHz,30 min/30 s超声波处理 240 W、24 kHz, 30 s ultrasound irradiation for every 30 min of incubation | 提高葡萄糖和乙醇产量 Improved the sugars and ethanol yield | [26] | |
甘蔗渣Sugarcane bagasse | 60 W/cm2、24 kHz | 在直接和间接超声作用下,水解产物的最高产率分别为31.3 g/kg和60.6 g/kg Maximum yield of hydrolysis were 31.3 g/kg and 60.6 g/kg respectively under direct and indirect sonication, respectively | [27] | |
木屑Sawdust | 50 W、20 kHz、占空比70% 50 W、20 kHz、70% duty cycle | 1 h 超声波强化酶解,与常规搅拌 3h的还原糖产率相当 Ultrasound intensified enzymatic hydrolysis within 1 h resulted in approximately same yield of reducing sugars within 3 h with conventional stirring | [28] | |
超声波强化SSF Ultrasound intensification of SSF | 甘蔗渣Sugarcane bagasse | 240 W、24 KH、每30 min进行30 s超声波处理 240 W、24 kHz, 30 s ultrasound irradiation for every 30 min of incubation | 提高发酵速率 Increased the rate of fermentation was higher | [26] |
银胶菊 Parthenium hysterophorus | 35 W、35 kHz、占空比为10% 35 W、35 kHz、10% duty cycle | 加速发酵和酶解 Fermentation and enzymatic hydrolysis were enhanced | [29] | |
棕榈叶Oil palm fronds | 200 W、37 kHz | 最大乙醇浓度18.2 g/L,产率57% Maximal bioethanol concentration was 18.2 g/L and yield was 57.0% | [30] | |
超声波强化产酶 Ultrasound intensification of cellulase production | 甘蔗渣Sugarcane bagasse | 240 W、24 kHz,每6 h进行30 s超声波处理 240 W、24 kHz,30 s ultrasound irradiation for every 6 h of incubation | 增加分生孢子数量;蛋白质浓度提高1.4倍 Produced conidia showed higher intensity, the protein concentration increased 1.4 fold | [26] |
Table 1 Applications of ultrasound intensification for enzymatic hydrolysis of lignocellulose
强化途径 Intensification approch | 原料 Materials | 超声波参数 Ultrasonic parameters | 主要影响 Main effects | 文献Reference |
---|---|---|---|---|
超声波预处理酶-底物 Ultrasound pretreatment of enzyme-substrate | 甘蔗渣 Sugarcane bagasse | 150.7 W/cm2、20 kHz | 还原糖浓度达到对照样的1.9倍 Concentration of reducing sugar was 1.9 times of the control | [1] |
超声波强化糖化 Ultrasound intensification of saccharification | 旧报纸Old newspaper | 60 W、20 kHz、占空比70% 60 W、20 kHz、70% duty cycle | 还原糖浓度达到对照样的2.4倍 Concentration of reducing sugar was 2.4 times of the control | [17] |
花生壳、椰子壳和开心果壳 Groundnut shells, coconut coir and pistachio shells | 80 W、20 kHz、占空比70% 80 W、20kHz、70% duty cycle | 还原糖产量达到对照样的2倍 Concentration of reducing sugar was double of the control | [18] | |
玉米芯Corncob | 280 W和500 W、20 kHz、占空比50%、 280 W and 500 W、20 kHz、50% duty cycle | 葡聚糖消化率分别提高75.6%和58.9% Glucan digestibilities were increased 75.6% and 58.9%, respectively | [19] | |
稻草Rice straw | 300 W、40 kHz | 总还原糖产率增加19.5% Yield of total reducing sugar with ultrasound increased by 19.5% | [20] | |
银胶菊Parthenium hysterophorus | 35 W、35 kHz、占空比10% 35 W、35 kHz、10% duty cycle | 酶解动力学提高6倍,总还原糖产量增加约20% Kinetics of hydrolysis showed a marked 6× increase with sonication, while total reducing sugar yield showed rise of 20% | [21] | |
银胶菊Parthenium hysterophorus | 35 W、35 kHz、占空比50% 35 W、35 kHz、50% duty cycle | 酶解动力学提高18倍,酶解时间从72 h减少到仅4 h 18-fold increase in the kinetics of enzymatic hydrolysis was seen with ultrasound, and the hydrolysis time reduced from 72 h to just 4 h | [22] | |
甜根子草、薇甘菊、马缨丹和凤眼莲 Saccharum spontaneum, Mikania micrantha, Lantana camara and Eichhornia crassipes) | 35 W、35 kHz、占空比为10% 35 W、35 kHz、10% duty cycle | 酶解动力学提高近10倍 Kinetics of enzymatic hydrolysis increased by 10-fold | [23] | |
玉米秸秆Corn stover | 80 W、20 kHz | 催化效率提高约70% Catalytic efficiency of cellulase increased by 70% | [24] | |
甘蔗渣Sugarcane bagasse | 132 W、40 kHz | 提高葡萄糖产量 Yield of glucose increased | [25] | |
甘蔗渣Sugarcane bagasse | 240 W、24 kHz,30 min/30 s超声波处理 240 W、24 kHz, 30 s ultrasound irradiation for every 30 min of incubation | 提高葡萄糖和乙醇产量 Improved the sugars and ethanol yield | [26] | |
甘蔗渣Sugarcane bagasse | 60 W/cm2、24 kHz | 在直接和间接超声作用下,水解产物的最高产率分别为31.3 g/kg和60.6 g/kg Maximum yield of hydrolysis were 31.3 g/kg and 60.6 g/kg respectively under direct and indirect sonication, respectively | [27] | |
木屑Sawdust | 50 W、20 kHz、占空比70% 50 W、20 kHz、70% duty cycle | 1 h 超声波强化酶解,与常规搅拌 3h的还原糖产率相当 Ultrasound intensified enzymatic hydrolysis within 1 h resulted in approximately same yield of reducing sugars within 3 h with conventional stirring | [28] | |
超声波强化SSF Ultrasound intensification of SSF | 甘蔗渣Sugarcane bagasse | 240 W、24 KH、每30 min进行30 s超声波处理 240 W、24 kHz, 30 s ultrasound irradiation for every 30 min of incubation | 提高发酵速率 Increased the rate of fermentation was higher | [26] |
银胶菊 Parthenium hysterophorus | 35 W、35 kHz、占空比为10% 35 W、35 kHz、10% duty cycle | 加速发酵和酶解 Fermentation and enzymatic hydrolysis were enhanced | [29] | |
棕榈叶Oil palm fronds | 200 W、37 kHz | 最大乙醇浓度18.2 g/L,产率57% Maximal bioethanol concentration was 18.2 g/L and yield was 57.0% | [30] | |
超声波强化产酶 Ultrasound intensification of cellulase production | 甘蔗渣Sugarcane bagasse | 240 W、24 kHz,每6 h进行30 s超声波处理 240 W、24 kHz,30 s ultrasound irradiation for every 6 h of incubation | 增加分生孢子数量;蛋白质浓度提高1.4倍 Produced conidia showed higher intensity, the protein concentration increased 1.4 fold | [26] |
[1] |
Silvello MA, Martínez J, Goldbeck R. Increase of reducing sugars release by enzymatic hydrolysis of sugarcane bagasse intensified by ultrasonic treatment[J]. Biomass and Bioenergy, 2019, 122:481-489.
doi: 10.1016/j.biombioe.2019.01.032 URL |
[2] |
Wang Z, Lin X, Li P, et al. Effects of low intensity ultrasound on cellulase pretreatment[J]. Bioresour Technology, 2012, 117:222-227.
doi: 10.1016/j.biortech.2012.04.015 URL |
[3] |
Nadar S S, Rathod V K. Ultrasound assisted intensification of enzyme activity and its properties:a mini-review[J]. World Journal of Microbiology and Biotechnology, 2017, 33:170-181.
doi: 10.1007/s11274-017-2322-6 URL |
[4] | 张俊, 许超, 张宇, 等. 纤维素酶降解机理的研究进展[J]. 华南理工大学学报, 2019, 47(9):121-130. |
Zhang J, Xu C, Zhang Y, et al. Research progress on cellulase biodegradation mechanism[J]. Journal of South China University of Technology, 2019, 47(9):121-130. | |
[5] | 徐晓, 程驰, 袁凯, 等. 里氏木霉产纤维素酶的研究进展[J]. 中国生物工程杂志, 2021, 41(1):52-61. |
Xu X, Cheng C, Yu K, et al. Research progress of cellulase production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1):52-61. | |
[6] |
Subhedar PB, Gogate PR. Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficientbioethanol production:A review[J]. Industrial & Engineering Chemistry Research, 2013, 52(34):11816-11828.
doi: 10.1021/ie401286z URL |
[7] | 曹长海, 张全, 关浩, 等. 提高木质纤维素酶解糖化效率的研究进展[J]. 中国生物工程杂志, 2015, 35(8):126-136. |
Cao CH, Zhang Q, Guan H, et al. Research progress of enhancing enzymatic saccharification efficiency of lignocellulose[J]. China Biotechnology, 2015, 35(8):126-136. | |
[8] | 沈丽君, 苏瑛杰, 于潇潇, 等. 木质纤维素诱导里氏木霉产纤维素酶及酶解增效作用研究进展[J]. 吉林农业大学学报, 2019, 41(6):681-685. |
Shen LJ, Su YJ, YU XX, et al. Advances in researches on cellulase production by lignocellulose and its synergism with enzymatic hydrolysis of Trichoderma reesei[J]. Journal of Jilin Agricultural University, 2019, 41(6):681-685. | |
[9] |
Adewuyi YG, Deshmane VG. Intensification of enzymatic hydrolysis of cellulose using high-frequency ultrasound:an investigation of the effects of process parameters on glucose yield[J]. Energy Fuels, 2015, 29(8):4998-5006.
doi: 10.1021/acs.energyfuels.5b00661 URL |
[10] |
Sulaiman AZ, Ajit A, Chisti Y. Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose[J]. Biotechnology Progress, 2013, 29(6):1448-1457.
doi: 10.1002/btpr.1786 pmid: 23926080 |
[11] |
Yachmenev V, Condon BD, Klasson KT, et al. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound[J]. Journal of Biobased Materials and Bioenergy, 2009, 3(1):25-31.
doi: 10.1166/jbmb.2009.1002 URL |
[12] | 魏薇, 常福祥, 孙建中, 等. 木质纤维“一锅法”制备生物乙醇的研究进展[J]. 生物质化学工程, 2018, 52(1):53-59. |
Wei W, Chang FX, Sun JZ, et al. Recent advances in “One-pot” bioethanol production from lignocellulose[J]. Biomass Chemical Engineering, 2018, 52(1):53-59. | |
[13] |
Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosicfeed stocks:a review[J]. Bioresour. Bioprocess, 2017, 4(1):7-26.
doi: 10.1186/s40643-017-0137-9 URL |
[14] | 曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2):489-495. |
Cao YQ, Xie XL, Guo ZQ, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2):489-495. | |
[15] | 王锐, 辛东林, 张军华. 木质素降解产物对纤维素酶和木聚糖酶水解的抑制[J]. 林业工程学报, 2019, 4(4):78-84. |
Wang R, Xin DL, Zhang JH. Inhibitory effects of vanillin, 4-hydroxybenzaldehyde and syringaldehyde on cellulases and xylanases[J]. Journal of Forestry Engineering, 2019, 4(4):78-84.
doi: 10.12737/issue_58f9e10e919fe5.43893047 URL |
|
[16] |
Trache D, Hazwan HM, Mohamad H, et al. Recent progress in cellulose nanocrystals:sources and production[J]. Nanoscale, 2017, 9(5):1763-1786.
doi: 10.1039/C6NR09494E URL |
[17] |
Subhedar PB, Babu NR, Gogate PR. Intensification of enzymatic hydrolysis of waste newspaper using ultrasound for fermentable sugar production[J]. Ultrasonics Sonochemistry, 2015, 22:326-332.
doi: 10.1016/j.ultsonch.2014.07.005 pmid: 25060116 |
[18] |
Subheder PB, Babu NR, Gogate PR. Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2017, 40(Pt B):140-150.
doi: 10.1016/j.ultsonch.2017.01.030 URL |
[19] |
Su RX, Yang RJ, Jifeng Y, et al. Oscillating cellulase adsorption and enhanced lignocellulose hydrolysis upon ultrasound treatment[J]. Transactions of Tianjin University, 2017, 23(1):11-19.
doi: 10.1007/s12209-016-0019-9 URL |
[20] |
Yang CY, Fang TJ. Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw[J]. Bioresource Technology, 2014, 164:198-202.
doi: 10.1016/j.biortech.2014.05.004 URL |
[21] |
Singh S, Agarwa M, Bhatt A, et al. Ultrasound enhanced enzymatic hydrolysis of Parthenium hysterophorus:A mechanistic investigation[J]. Bioresource Technology, 2015, 192:636-645.
doi: 10.1016/j.biortech.2015.06.031 URL |
[22] |
Bharadwaja STP, Singh S, Moholkar VS. Design and optimization of a sono-hybrid process for bioethanol production from Parthenium hysterophorus[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51:71-78.
doi: 10.1016/j.jtice.2015.01.022 URL |
[23] |
Borah AJ, Agarwal M, Poudyal M, et al. Mechanistic investigation in ultrasound induced enhancement of enzymatic hydrolysis of invasive biomass species[J]. Bioresource Technology, 2016, 213:342-349.
doi: 10.1016/j.biortech.2016.02.024 URL |
[24] |
Zhang YQ, Fu EH, Liang JH, et al. Effect of ultrasonic waves on the saccharification processes of lignocellulose[J]. Chemical Engineering Technology, 2008, 31(10):1510-1515.
doi: 10.1002/ceat.v31:10 URL |
[25] |
Gasparotto JM, Werle LB, Foletto EL. Production of cellulolytic enzymes and application of crude enzymatic extract for saccharification of lignocellulosic biomass[J]. Applied Biochemistry and Biotechnology, 2015, 175(1):560-572.
doi: 10.1007/s12010-014-1297-0 pmid: 25331378 |
[26] |
Velmurugan R, Incharoensakdi A. Proper ultrasound treatment increases ethanol production from simultaneous saccharification and fermentation of sugarcane bagasse[J]. RSC Advance, 2016, 6(94):91409-91419.
doi: 10.1039/C6RA17792A URL |
[27] | Gasparotto JM, Werle LB, Mainardi MA, et al. Ultrasound-assisted hydrolysis of sugarcane bagasse using cellulolytic enzymes by direct and indirect sonication[J]. Process Biochemistry, 2015, 4(4):480-485. |
[28] |
Patil RS, Joshi SM, Gogate PR. Intensification of delignification of sawdust and subsequent enzymatic hydrolysis using ultrasound[J]. Ultrasonics Sonochemistry, 2019, 58:104656-104565.
doi: 10.1016/j.ultsonch.2019.104656 URL |
[29] |
Singh S, Agarwal M, Sarma S, et al. Mechanistic insight into ultrasound induced enhancement of simultaneous saccharification and fermentation of Parthenium hysterophorus for ethanol production[J]. Ultrasonics Sonochemistry, 2015, 26:249-256.
doi: 10.1016/j.ultsonch.2015.02.011 URL |
[30] |
Ofori-Boateng C, Lee KT. Ultrasonic-assisted simultaneous saccharifification and fermentation of pretreated oil palm fronds for sustainable bioethanol production[J]. Fuel, 2014, 119:285-291.
doi: 10.1016/j.fuel.2013.11.064 URL |
[31] | Silvana S, Bruno CA, Eliana AA, et al. Ultrasound-assisted fermentation for production of β-1, 3-glucanase and chitinase by Beauveria bassiana[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(1):88-98. |
[32] |
Shaheen M, Choi M, Ang W, et al. Application of low-intensity pulsed ultrasound to increase bioethanol production[J]. Renewable Energy, 2013, 57:462-468.
doi: 10.1016/j.renene.2013.02.009 URL |
[33] |
Holkar CR, Jadhav AJ, Pinjari DV, et al. Cavitationally driven transformations:a technique of process intensification[J]. Industrial & Engineering Chemistry Research, 2019, 58(15):5797-5819
doi: 10.1021/acs.iecr.8b04524 URL |
[34] |
Easson MW, Condon B, Dien BS, et al. The application of ultrasound in the enzymatic hydrolysis of switchgrass[J]. Applied Biochemistry and Biotechnology, 2011, 165(5-6):1322-1331.
doi: 10.1007/s12010-011-9349-1 URL |
[35] |
Subhedar PB, Gogate PR. Enhancing the activity of cellulase enzyme using ultrasonic irradiations[J]. Journal of Molecular Catalysis B:Enzymatic, 2014, 101:108-114.
doi: 10.1016/j.molcatb.2014.01.002 URL |
[36] |
Silvell MA, Martínez J, Goldbeck R. Low-frequency ultrasound with short application time improves cellulase activity and reducing sugars release[J]. Applied Biochemistry and Biotechnology, 2020, 191:1042-1055.
doi: 10.1007/s12010-019-03148-1 URL |
[37] |
Holtzapple MT, Caram HS, Humphrey AE. The HCH-1 model of enzymatic cellulose hydrolysis[J]. Biotechnology and Bioengineering, 1984, 26(7):775-780.
pmid: 18553446 |
[38] |
Delgado-Povedano M, Luque de Castro MD. A review on enzyme and ultrasound:a controversial but fruitful relationship[J]. Analytica Chimica Acta, 2015, 889:1-21.
doi: 10.1016/j.aca.2015.05.004 pmid: 26343424 |
[39] |
Fan XH, Zhang XY, Zhang QA, et al. Optimization of Ultrasound Parameters and its Effect on the Properties of the Activity of beta-Glucosidase in Apricot Kernels[J]. Ultrasonics Sonochemistry, 2019, 52:468-476.
doi: 10.1016/j.ultsonch.2018.12.027 URL |
[40] |
Ladole MR, Mevada JS, Pandit AB. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles[J]. Bioresource Technology, 2017, 239:117-126.
doi: 10.1016/j.biortech.2017.04.096 URL |
[41] | Nguyen TTT, Le VVM. Effects of ultrasound on cellulolytic activity of cellulase complex[J]. International Food Research Journal, 2013, 20:557-563. |
[42] | Sun YJ, Zeng L, Xue YZ, et al. Effects of power ultrasound on the activity and structure of β-D-glucosidase with potentially aroma-enhancing capability[J]. Food Science & Nutrition, 2019, 7(3):2043-2049. |
[43] |
Szabó OE, Csiszár E. The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme[J]. Carbohydrate Polymers, 2013, 98(2):1483-1489.
doi: 10.1016/j.carbpol.2013.08.017 URL |
[44] |
Luzzi SC, Artifon W, Piovesan B, et al. Pretreatment of lignocellulosic biomass using ultrasound aiming at obtaining fermentable sugar[J]. Biocatalysis and Biotransformation, 2017, 35(3):1-10.
doi: 10.1080/10242422.2016.1266617 URL |
[45] |
Dalagnol LMG, Silveira VCC, Silva HB, et al. Improvement of pectinase, xylanase and cellulase activities by ultrasound:effects on enzymes and substrates, kinetics and thermodynamic parameters[J]. Process Biochemistry, 2017, 61:80-87.
doi: 10.1016/j.procbio.2017.06.029 URL |
[46] | Silva MBR, Falco HG, Kurozawa LE, et al. ltrasound- and hemicellulase-assisted extraction increase β-glucosidase activity, the content of isoflavone aglycones and antioxidant potential of soymilk[J]. Journal of Food Bioactives, 2019, 6:140-147. |
[47] |
Chen LY, Bi XF, Cao XM, et al. Effects of high power ultrasound on microflora, enzymes and some quality attributes of a strawberry drink[J]. Journal of the Science of Food and Agriculture, 2018, 98(14):5378-5385.
doi: 10.1002/jsfa.2018.98.issue-14 URL |
[48] | 金永灿, 陈慧, 吴文娟, 等. 水溶性木质素对纤维原料酶水解的影响研究进展[J]. 林业工程学报, 2020, 5(4):12-19. |
Jin YC, Chen H, Wu WJ, et al. Investigations of the effect of water- soluble lignin on enzymatic hydrolysis of lignocellulose[J]. Journal of Forestry Engineering, 2020, 5(4):12-19. | |
[49] | 刘南, 祁峰, 李力, 等. 纤维素降解辅助蛋白及其作用机理研究进展[J]. 化工进展, 2018, 37(3):1118-1129. |
Liu N, Qi F, Li L, et al. Auxiliary proteins for boosting enzymatic hydrolysis of cellulose and the action mechanisms[J]. Chemicaal Industry and Engineering Progress, 2018, 37(3):1118-1129. | |
[50] | Luo J, Fang Z, Smith RL. Ultrasound-enhanced conversion of biomass to biofuels[J]. Progress in Energy and Combustion Science, 2014, 40(1):400-421. |
[1] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[2] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[3] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[4] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[5] | ZHANG Kai-ping, LIU Yan-li, TU Mian-liang, LI Ji-wei, WU Wen-biao. Optimization of Producing Cellulase by Aspergillus fumigatus A-16 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(9): 215-225. |
[6] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[7] | ZHANG Gong-you, WANG Yi-han, GUO Min, ZHANG Ting-ting, WANG Bing, LIU Hong-mei. Isolation and Identification of a Cellulase-producing Endophytic Fungus in Paris polyphylla var. yunnanensis [J]. Biotechnology Bulletin, 2022, 38(2): 95-104. |
[8] | TANG Hao, SUN Can, LI Yuan-qiu, LUO Chao-bing. Screening and Genome Sequencing of Cellulytic Bacterium Raoultella ornithinolytica LL1 [J]. Biotechnology Bulletin, 2021, 37(6): 85-96. |
[9] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[10] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[11] | LIU Deng, LIU Jun-hong. Research Progress of Thermophilic Lignocellulase in Cellulose Ethanol Production [J]. Biotechnology Bulletin, 2020, 36(8): 185-193. |
[12] | FENG Guang-zhi, SHI Hui, LIU Bo, WU Yu-ting, WANG Yue-lin, SHI Yu. Screening and Identification of Cellulase-producing Strains Isolated from Crayfish Intestine [J]. Biotechnology Bulletin, 2020, 36(2): 65-70. |
[13] | YANG Bin, LI Xiao-bo, ZHOU Lin, OU Pei-yu, JIN Xiao-bao. Identification and Enzymatic Properties of Strain YB Simultaneously Secreting Highly Efficient Cellulase and Xylanase [J]. Biotechnology Bulletin, 2020, 36(2): 110-118. |
[14] | ZHANG Jia-shun, GAO Li-li, MA Jiang-shan, LIU Gao-qiang. Effect of Surfactant on Cellulase Hydrolysis and Its Mechanism [J]. Biotechnology Bulletin, 2019, 35(9): 11-20. |
[15] | LI Lin-chao, ZHANG Chao, DONG Qing, GUO Cheng, ZHOU Bo, GAO Zheng. Isolation and Identification of Cellulose Degrading Microorganisms in Composting Process [J]. Biotechnology Bulletin, 2019, 35(9): 165-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||