Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 15-23.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1338
Previous Articles Next Articles
GU Han-qi1(), SHAO Ling-zhi1, LIU Ran1, LIU Xiao-guang1, LI Ling1, LIU Qian1, LI Jie1(), ZHANG Ya-li2
Received:
2020-11-01
Online:
2021-01-26
Published:
2021-01-15
Contact:
LI Jie
E-mail:gu_hanqi@126.com;lijie0651@163.com
GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors[J]. Biotechnology Bulletin, 2021, 37(1): 15-23.
[1] | 曹运齐, 刘云云, 胡南江, 等. 燃料乙醇的发展现状分析及前景展望[J]. 生物技术通报, 2019,35(4):169-175. |
Cao Y, Liu Y, Hu N, et al. Current status and prospects of fuel ethanol production[J]. Biotechnology Bulletin, 2019,35(4):169-175. | |
[2] | 李洪兴, 张笑然, 沈煜, 等. 纤维素乙醇生物加工过程中的抑制物对酿酒酵母的影响及应对措施[J]. 生物工程学报, 2009(9):1321-1328. |
Li H, Zhang X, Shen Y, et al. Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose-a review[J]. Chinese Journal of Biotechnology, 2009(9):1321-1328. | |
[3] |
Gu H, Zhang J, Bao J. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues[J]. Bioresour Technol, 2014,157:6-13.
URL pmid: 24518544 |
[4] | Yi X, Gu H, Gao Q, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J]. Biotechnol Biofuels, 2015,8:153. |
[5] | Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates[J]. Appl Microbiol Biotechnol, 2011,90(3):809-825. |
[6] | Aulitto M, Fusco S, Nickel D, et al. Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation[J]. Biotechnol Biofuels, 2019,12:45. |
[7] |
Gu H, Zhu Y, Peng Y, et al. Physiological mechanism of improved tolerance of Saccharomyces cerevisiae to lignin-derived phenolic acids in lignocellulosic ethanol fermentation by short-term adaptation[J]. Biotechnol Biofuels, 2019,12:268.
URL pmid: 31755875 |
[8] | 张苗苗, 陆栋, 剡倩, 等. 细胞膜对酿酒酵母乙醇耐受性影响的研究进展[J]. 中国酿造, 2016,35(9):16-19. |
Zhang M, Lu D, Yan Q, et al. Research progress on effect of cell membrane on ethanol tolerance of Saccharomyces cerevisiae[J]. China Brewing, 2016,35(9):16-19. | |
[9] | Qi Y, Liu H, Chen X, et al. Engineering microbial membranes to increase stress tolerance of industrial strains[J]. Metab Eng, 2019,53:24-34. |
[10] | Gu H, Zhang J, Bao J. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue[J]. Biotechnol Bioeng, 2015,112(9):1770-1782. |
[11] | 巩林林, 杨波, 杨光, 等. 有机溶剂乙腈对酵母菌细胞膜透性的影响[J]. 工业微生物, 2019,49(6):44-49. |
Gong L, Yang B, Yang G, et al. Effects of organic solvent acetonitrile on cell membrane permeability of yeast[J]. Industrial Microbiology, 2019,49(6):44-49. | |
[12] | 郭红, 邱月, 魏建平, 等. 酿酒酵母细胞壁和细胞膜应对高渗胁迫机制研究[J]. 农业机械学报, 2020,51(6):353-359. |
Guo H, Qiu Y, Wei J, et al. Hyperosmotic stress response of Saccharomyces cerevisiae cell wall and cell membrane[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020,51(6):353-359. | |
[13] | Tian H, Zhou J, Qiao B, et al. Lipidome profiling of Saccharomyces cerevisiae reveals pitching rate-dependent fermentative performance[J]. Appl Microbiol Biotechnol, 2010,87(4):1507-1516. |
[14] | Xia J, Jones A, Lau M, et al. Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity[J]. Biotechnol Bioeng, 2011,108(1):12-21. |
[15] | Jeucken A, Brouwers J. High-throughput screening of lipidomic adaptations in cultured cells[J]. Biomolecules, 2019,9(2):42. |
[16] |
Kodedová M, Valachovič M, Csáky Z, et al. Variations in yeast plasma-membrane lipid composition affect killing activity of three families of insect antifungal peptides[J]. Cell Microbiol, 2019,21(12):e13093.
doi: 10.1111/cmi.13093 URL pmid: 31376220 |
[17] |
De Kroon A, Rijken P, De Smet C. Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective[J]. Prog Lipid Res, 2013,52(4):374-394.
doi: 10.1016/j.plipres.2013.04.006 URL pmid: 23631861 |
[18] | Wang X, Jiang S, Zhang W, et al. Study on reproductive toxicity of fine particulate matter by metabolomics[J]. Chinese J of Anal Chem, 2017,45(5):633-640. |
[19] |
Dong Y, Hu J, Fan L, et al. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae[J]. Sci Rep, 2017,7:42659.
doi: 10.1038/srep42659 URL pmid: 28209995 |
[20] |
Yang J, Ding M, Li B, et al. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol[J]. OMICS, 2012,16(7-8):374-386.
doi: 10.1089/omi.2011.0127 URL pmid: 22734833 |
[21] |
Renne M, De Kroon A. The role of phospholipid molecular species in determining the physical properties of yeast membranes[J]. FEBS Letters, 2018,592(8):1330-1345.
URL pmid: 29265372 |
[22] |
Dawaliby R, Trubbia C, Delporte C, et al. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells[J]. J Biol Chem, 2016,291(7):3658-3667.
doi: 10.1074/jbc.M115.706523 URL pmid: 26663081 |
[23] | Muthukumar K, Nachiappan V. Phosphatidylethanolamine from phosphatidylserine decarboxylase2 is essential for autophagy under cadmium stress in Saccharomyces cerevisiae[J]. Cell Biochem and Biophys, 2013,67(3):1353-1363. |
[24] | Koynova R, Caffrey M. Phases and phase transitions of the hydrated phosphatidylethanolamines[J]. Chem and Phys Lipids, 1994,69(1):1-34. |
[25] |
Yin N, Zhu G, Luo Q, et al. Engineering of membrane phospholipid component enhances salt stress tolerance in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2020,117(3):710-720.
doi: 10.1002/bit.27244 URL pmid: 31814106 |
[26] |
Wang X, Bai X, Chen D, et al. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors[J]. Biotechnol Biofuels, 2015,8:142.
URL pmid: 26379774 |
[27] | Besada-Lombana P, Fernandez-Moya R, Fenster J, et al. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid[J]. Biotechnol Bioeng, 2017,114(7):1531-1538. |
[28] |
Ballweg S, Sezgin E, Doktorova M, et al. Regulation of lipid saturation without sensing membrane fluidity[J]. Nat Commun, 2020,11(1):756.
URL pmid: 32029718 |
[29] |
Liu P, Chernyshov A, Najdi T, et al. Membrane stress caused by octanoic acid in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2013,97(7):3239-3251.
URL pmid: 23435986 |
[30] | Fang Z, Chen Z, Wang S, et al. Overexpression of OLE1 enhances cytoplasmic membrane stability and confers resistance to cadmium in Saccharomyces cerevisiae[J]. Appl Environ Microb, 2016,83(1):e02319-16. |
[31] | Kim H, Kim N, Choi W. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation[J]. Biotechnol Lett, 2011,33(3):509-515. |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[3] | WANG Xin-lu, WANG Meng, ZHAI Wen-lei. Application of Lipidomics in Toxicological Studies [J]. Biotechnology Bulletin, 2023, 39(3): 69-80. |
[4] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[5] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[6] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[7] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[8] | HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose [J]. Biotechnology Bulletin, 2021, 37(10): 234-244. |
[9] | CUI Xin-gang, SUN Ya-xin, CUI Xiao-jing, DENG Yan-wen, SUN En-hao, WANG Jun-fang, CUI Hong-jing. Roles of Gene TAP42 in the Cell Wall Stress Response of Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2021, 37(10): 57-62. |
[10] | TIAN He, SHUI Guang-hou. Advances in Analysis Methods of Mass Spectrometry-based Metabolomics [J]. Biotechnology Bulletin, 2021, 37(1): 24-32. |
[11] | WU Yu, WANG Jin-hua, ZHAO Xiao. Enhanced Furfural Tolerance in Saccharomyces cerevisiae by the Overexpression of GLN1 Gene [J]. Biotechnology Bulletin, 2020, 36(8): 69-78. |
[12] | GU Han-qi, LIU Ran, SHAO Ling-zhi, XU Yan-yan, WANG Dong-yan, ZHANG Dong-mei, LI Jie. Study on the Tolerance of Saccharomyces cerevisiae Strain to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2020, 36(6): 136-142. |
[13] | LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(12): 199-207. |
[14] | CAO Wen-yan, WANG Xin-ning, SHEN Yu, LI Zai-lu, BAO Xiao-ming. Research Advances on Transcription Factor Yrr1p of Pleiotropic Drug Resistance in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(11): 148-154. |
[15] | CHEN He-feng, ZHU Chao-yi, LI Shuang. Expression Vector Adaptation of Valencene-producing Saccharomyces cerevisiae and Optimization of Fermentation Carbon and Nitrogen Sources [J]. Biotechnology Bulletin, 2020, 36(1): 209-219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||