[1] Zhao X, Xiong L, Zhang M, et al. Towards efficient bioethanol production from agricultural and forestry residues:Exploration of unique natural microorganisms in combination with advanced strain engineering[J]. Bioresour Technol, 2016, 215:84-91. [2] Moyses DN, Reis VC, De Almeida JR, et al. Xylose fermentation by Saccharomyces cerevisiae:challenges and prospects[J]. Int J Mol Sci, 2016, 17(3):207. [3] Matsushika A, Inoue H, Kodaki T, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains:current state and perspectives[J]. Appl Microbiol Biot, 2009, 84(1):37-53. [4] 刘贺, 朱家庆, 纵秋瑾, 等. 生物质转化工程酿酒酵母的研究进展[J]. 生物技术通报, 2017, 33(1):93-98. [5] Zhou H, Cheng JS, Wang BL, et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae[J]. Metab Eng, 2012, 14(6):611-622. [6] Sato TK, Tremaine M, Parreiras LS, et al. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae[J]. PLoS Genet, 2016, 12(10):e1006372. [7] Matsushika A, Inoue H, Murakami K, et al. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae[J]. Bioresour Technol, 2009, 100(8):2392-2398. [8] Feng X, Zhao H. Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis[J]. Biotechnol Biofuels, 2013, 6(1):96. [9] Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation:reflections and perspectives[J]. Biotechnol J, 2012, 7(1):34-46. [10] Diao L, Liu Y, Qian F, et al. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution[J]. BMC Biotechnol, 2013, 13(1):1-9. [11] Demeke MM, Dietz H, Li Y, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering[J]. Biotechnol Biofuels, 2013, 6(5):89-89. [12] Hector RE, Dien BS, Cotta MA, et al. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol Biofuels, 2013, 6:84(16):195-200. [13] Lee S M, Jellison T, Alper HS. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields[J]. Biotechnol Biofuels, 2014, 7(1):122. [14] Vilela LD, De Araujo VPG, Paredes RD, et al. Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain[J]. AMB Express, 2015, 5(1):16. [15] Qi X, Zha J, Liu GG, et al. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae[J]. Front Microbiol, 2015, 6:1165. [16] Bamba T, Hasunuma T, Kondo A. Disruption of PHO13 improves ethanol production via the xylose isomerase pathway[J]. AMB Express, 2016, 6(1):4. [17] Madigan MT, Martinko JM, Stahl DA, et al. Brock Biology of microorganisms. 13th ed[M]. New York:Benjamin Cummings, 2010:177. [18] Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2009, 75(8):2304-2311. [19] Li YC, Li GY, Gou M, et al. Functional expression of xylose isomerase in flocculating industrial Saccharomyces cerevisiae strain for bioethanol production[J]. J Biosci Bioeng, 2016, 121(6):685-691. [20] Tanino T, Hotta A, Ito T, et al. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation[J]. Appl Microbiol Biot, 2010, 88(5):1215-1221. [21] Rensburg EV, Haan RD, Smith J, et al. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture[J]. Appl Microbiol Biot, 2012, 96(1):197-209. [22] Kovalevsky A, Hanson BL, Mason SA, et al. Inhibition of D-xylose isomerase by polyols:atomic details by joint X-ray/neutron crystallography[J]. Acta Crystallogr D Biol Crystallogr, 2012, 68(Pt9):1201-1206. [23] Yamanaka K. Inhibition of D-xylose isomerase by pentitols and D-lyxose[J]. Arch Biochem Biophy, 1969, 131(2):502-506. [24] Ha SJ, Kim SR, Choi JH, et al. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro[J]. Appl Microbiol Biot, 2011, 92(1):77-84. [25] Hohenschuh W, Hector R, Murthy GS. A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae[J]. Bioresour Technol, 2015, 188:153-160. [26] Nogué VS, Karhumaa K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals[J]. Biotechnol Lett, 2015, 37(4):761-772. [27] Hamacher T, Becker J, Gardonyi M, et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization[J]. Microbiol, 2002, 148(Pt9):2783-2788. [28] Saloheimo A, Rauta J, Stasyk OV, et al. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases[J]. Appl Microbiol Biot, 2007, 74(5):1041-1052. [29] Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae[J]. Biotechnol Biofuel, 2012, 5:14. [30] Apel AR, Ouellet M, Szmidt-Middleton H, et al. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae[J]. Sci Rep, 2016, 6:19512. [31] Nijland JG, Shin HY, Jong RMD, et al. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae[J]. Biotechnol Biofuel, 2014, 7(1):168. [32] Bergdahl B, Sandstr?m AG, Borgstr?m C, et al. Engineering yeast Hexokinase 2 for improved tolerance toward xylose-induced inactivation[J]. PLoS One, 2013, 8(9):e75055. [33] Farwick A, Bruder S, Schadeweg V, et al. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose[J]. PNAS, 2014, 111(14):5159-5164. [34] Kim S R, Ha SJ, Wei N, et al. Simultaneous co-fermentation of mixed sugars:A promising strategy for producing cellulosic ethanol[J]. Trend Biotechnol, 2012, 30(5):274-282. [35] Katahira S, Ito M, Takema H, et al. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1[J]. Enzyme Microb Tech, 2008, 43(2):115-119. [36] Runquist D, Hahn-H?gerdal B, R?dstr?m P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae[J]. Biotechnol Biofuel, 2010, 3:5. [37] Du J, Li S, Zhao H. Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis[J]. Mol Biosyst, 2010, 6(11):2150-2156. [38] Runquist D, Fonseca C, R?dstr?m P, et al. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae[J]. Appl Microbiol Biot, 2008, 82(1):123-130. [39] Zhang J, Zhang B, Wang D, et al. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters[J]. Bioresource Techn, 2015, 175:642-645. [40] Young EM, Alice T, Hang B, et al. Rewiring yeast sugar transporter preference through modifying a conserved protein motif[J]. PNAS, 2014, 111(1):131-136. [41] Kim SR, Park YC, Jin YS, et al. Strain engineering of Saccharom-yces cerevisiae for enhanced xylose metabolism[J]. Biotechnol Adv, 2013, 31(6):851-861. [42] Jin YS, Alper H, Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach[J]. Appl Environ Microb, 2005, 71(12):8249-8256. [43] 巩继贤, 郑辉杰, 郑宗宝, 等. 微生物进化工程育种技术进展与展望[J]. 生物加工过程, 2010(2):69-76. [44] Wisselink H, Toirkens M, Wu Q, et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains[J]. Appl Environ Microb, 2009, 75(4):907-914. [45] Lee SM, Jellison T, Alper HS. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae[J]. Appl Environ Microb, 2012, 78(16):5708-5716. [46] Peng B, Huang S, Liu T, et al. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation[J]. Microb Cell Fact, 2015, 14:70. [47] Parreiras LS, Breuer RJ, Narasimhan RA, et al. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover[J]. PLoS One, 2014, 9(9):e107499. [48] 李云成, 汤岳琴, 木田建次. “组学”技术在燃料乙醇生产用酿酒酵母菌株构建中的应用[J]. 中国生物工程杂志, 2014, 34(2):118-128. [49] 赵心清, 白凤武, 李寅. 系统生物学和合成生物学研究在生物燃料生产菌株改造中的应用[J]. 生物工程学报, 2010, 26(7):880-887. [50] Mukhopadhyay A, Keasling JD. Importance of systems biology in engineering microbes for biofuel production[J]. Curr Opin Biotech, 2008, 19(3):228-234. [51] Hou J, Jiao C, Peng B, et al. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae[J]. Metab Eng, 2016, 38:241-250. |