Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (9): 191-199.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0285
• CONTENTS • Previous Articles Next Articles
ZHANG Yi-zhi,GOU Min,TANG Yue-qin
Received:
2017-04-08
Online:
2017-09-01
Published:
2017-09-15
ZHANG Yi-zhi,GOU Min,TANG Yue-qin. Improvement of Inhibitor Tolerance of a Xylose-Fermenting Industrial Saccharomyces cerevisiae Strain Through UV Mutation and Acclimation[J]. Biotechnology Bulletin, 2017, 33(9): 191-199.
[1] Cardona CA, Quintero JA, Paz IC. Production of bioethanol from sugarcane bagasse:status and perspectives[J] . Bioresource Technology, 2010, 101(13):4754-4766. [2] Chu BCH, Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation[J] . Biotechnology Advances, 2007, 25(5):425-441. [3] Wahlbom CF, van Zyl WH, J?nsson LJ, et al. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS6054[J] . FEMS Yeast Research, 2003, 3(3):319-326. [4] Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae[J] . Applied and Environmental Microbiology, 2009, 75(8):2304-2311. [5] Zhou H, Cheng J, Wang BL, et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae[J] . Metabolic Engineering, 2012, 14(6):611-622. [6] Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. II:inhibitors and mechanisms of inhibition[J] . Bioresource Technology, 2000, 74(1):25-33. [7] Palmqvist E, Hahn-H?gerdal B. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification[J] . Bioresource Technology, 2000, 74(1):17-24. [8] Moysés DN, Reis VCB, Almeida JRM, et al. Xylose fermentation by Saccharomyces cerevisiae:challenges and prospects[J] . International Journal of Molecular Sciences, 2016, 17(3):207. [9] Demeke MM, Dumortier F, Li Y, et al. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production[J] . Biotechnology for Biofuels, 2013, 6(1):120. [10] Ask M, Bettiga M, Duraiswamy VR, et al. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase[J] . Biotechnology for Biofuels, 2013, 6(1):181. [11] Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae[J] . Microbiology and Molecular Biology Reviews, 2008, 72(3):379-412. [12] Novy V, Krahulec S, Wegleiter M, et al. Process intensification through microbial strain evolution:mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae[J] . Biotechnology for Biofuels, 2014, 7(1):49. [13] Casey E, Sedlak M, Ho NWY, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae[J] . FEMS Yeast Research, 2010, 10(4):385-393. [14] Sànchezi Nogué V, Narayanan V, Gorwa-Grauslund MF. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH[J] . Applied Microbiology and Biotechnology, 2013, 97(16):7517-7525. [15] Peng LU, Chen L, Li G, et al. Influence of furfural concentration on growth and ethanol yield of Saccharomyces kluyveri[J] . Journal of Environmental Sciences, 2007, 19(12):1528-1532. [16] Oliva JM, Negro MJ, Saez F, et al. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus[J] . Process Biochemistry, 2006, 41(5):1223-1228. [17] Ballesteros M, Oliva JM, Negro MJ, et al. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process(SFS)with Kluyveromyces marxianus CECT10875[J] . Process Biochemistry, 2004, 39(12):1843-1848. [18] Li YC, Mitsumasu K, Gou ZX, et al. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37[J] . Applied Microbiology and Biotechnology, 2016, 100(3):1531-1542. [19] Zeng WY, Tang YQ, Gou M, et al. Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources[J] . AMB Express, 2016, 6(1):51. [20] Zeng WY, Tang YQ, Gou M, et al. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability[J] . Applied Microbiology and Biotechnology, 2017, 101:1753-1767. [21] Landaeta R, Aroca G, Acevedo F, et al. Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation[J] . Applied Energy, 2013, 102:124-130. [22] Koppram R, Albers E, Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass[J] . Biotechnology for Biofuels, 2012, 5(1):32. [23] 苟梓希, 李云成, 谢采芸, 等. 工业酿酒酵母菌株 KF-7 对发酵抑制物的耐受性[J] . 应用与环境生物学报, 2015, 21(2):248-255. [24] Tang YQ, Koike Y, Liu K, et al. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7[J] . Biomass and Bioenergy, 2008, 32(11):1037-1045. [25] 郭雪娇, 查健, 姚坤, 等. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J] . 中国生物工程杂志, 2016, 26(5):97-105. [26] Sanda T, Hasunuma T, Matsuda F, et al. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids[J] . Bioresource Technology, 2011, 102(17):7917-7924. [27] Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli[J] . Biotechnology and Bioengineering, 1999, 65(1):24-33. [28] 林贝, 赵心清, 葛旭萌, 等. 玉米秸秆酸解副产物对重组酿酒酵母 6508-127 发酵的影响[J] . 中国生物工程杂志, 2007, 27(7):61-67. [29] Endo A, Nakamura T, Ando A, et al. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae[J] . Biotechnology for Biofuels, 2008, 1(1):3. [30] Yi X, Gu H, Gao Q, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J] . Biotechnology for Biofuels, 2015, 8(1):153. |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[3] | ZHU Ying-xuan, LI Ke-jing, HE Min, ZHENG Dao-qiong. Research Progress in the Exploring Genomic Variations Driven by Stress Factors Using the Yeast Model [J]. Biotechnology Bulletin, 2023, 39(11): 191-204. |
[4] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[5] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[6] | CUI Xin-gang, SUN Ya-xin, CUI Xiao-jing, DENG Yan-wen, SUN En-hao, WANG Jun-fang, CUI Hong-jing. Roles of Gene TAP42 in the Cell Wall Stress Response of Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2021, 37(10): 57-62. |
[7] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[8] | WU Yu, WANG Jin-hua, ZHAO Xiao. Enhanced Furfural Tolerance in Saccharomyces cerevisiae by the Overexpression of GLN1 Gene [J]. Biotechnology Bulletin, 2020, 36(8): 69-78. |
[9] | GU Han-qi, LIU Ran, SHAO Ling-zhi, XU Yan-yan, WANG Dong-yan, ZHANG Dong-mei, LI Jie. Study on the Tolerance of Saccharomyces cerevisiae Strain to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2020, 36(6): 136-142. |
[10] | LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(12): 199-207. |
[11] | CAO Wen-yan, WANG Xin-ning, SHEN Yu, LI Zai-lu, BAO Xiao-ming. Research Advances on Transcription Factor Yrr1p of Pleiotropic Drug Resistance in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(11): 148-154. |
[12] | CHEN He-feng, ZHU Chao-yi, LI Shuang. Expression Vector Adaptation of Valencene-producing Saccharomyces cerevisiae and Optimization of Fermentation Carbon and Nitrogen Sources [J]. Biotechnology Bulletin, 2020, 36(1): 209-219. |
[13] | GUO Zhen-qiang, ZHANG Yong, CAO Yun-qi, LIU Yun-yun, ZHAO Yu, WU Ai-min. Research Progress of Fuel Ethanol Fermentation Technology [J]. Biotechnology Bulletin, 2020, 36(1): 238-244. |
[14] | XU Qiong-dan, WANG Yong-ze, WANG Jin-hua, ZHAO Xiao. Influence of mglB Gene Knockout in Engineered Escherichia coli Producing Ethanol on the Xylose Utilization of Mix Sugar Fermentation [J]. Biotechnology Bulletin, 2019, 35(6): 83-90. |
[15] | CAO Yun-qi, LIU Yun-yun, HU Nan-jiang, HU Xiao-wei, ZHANG Yao, ZHAO Yu, WU Ai-min. Current Status and Prospects of Fuel Ethanol Production [J]. Biotechnology Bulletin, 2019, 35(4): 163-169. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||