Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (10): 80-87.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0223
• Review • Previous Articles Next Articles
FAN Xing-hui, WANG Hui-shan HE, Jie-hua YE, Tian YANG, Fang CHEN Shao-hua
Received:
2017-03-21
Online:
2017-10-29
Published:
2017-10-29
Contact:
陈少华,男,教授,研究方向:微生物降解、微生物群体感应;E-mail:shchen@scau.edu.cn
FAN Xing-hui, WANG Hui-shan HE, Jie-hua YE, Tian YANG, Fang CHEN Shao-hua. Research Progress on Microbial Quorum Quenching Enzymes and Their Control of Plant Diseases[J]. Biotechnology Bulletin, 2017, 33(10): 80-87.
[1]Nealson KH. Autoinduction of bacterial luciferase. Occurrence, mechanism and significance[J]. Archives of Microbiology, 1977, 112(1):73-79. [2]Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system[J]. Journal of Bacteriology, 1970, 104(1):313-322. [3]Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm[J]. Science, 1998, 280(5361):295-298. [4]Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2):269-275. [5]Brameyer S, Kresovic D, Bode HB, et al. Dialkylresorcinols as bacterial signaling molecules[J]. Proc Natl Acad Sci USA, 2015, 112(2):572-577. [6]Brameyer S, Bode HB, Heermann R. Languages and dialects:bacterial communication beyond homoserine lactones[J]. Trends in Microbiology, 2015, 23(9):521-523. [7]Yates EA, Philipp B, Buckley C, et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa[J]. Infection and Immunity, 2002, 70(10):5635-5646. [8]Park SY, Lee SJ, Oh TK, et al. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp. , and predicted homologues in other bacteria[J]. Microbiology-Sgm, 2003, 149(6):1541-1550. [9]邱健, 贾振华, 马宏, 等. 一株降解N-酰基高丝氨酸内酯酵母菌菌株的分离鉴定及其降解特性[J]. 微生物学报, 2007, 2:355-358. [10]罗利龙. 红冬孢酵母中Ahl降解酶的分离纯化[D]. 天津:河北工业大学, 2010. [11]Bar-Rogovsky H, Hugenmatter A, Tawfik DS. The evolutionary origins of detoxifying enzymes:the mammalian serum paraoxonases(PONs)relate to bacterial homoserine lactonases[J]. Journal of Biological Chemistry, 2013, 288(33):23914-23927. [12]Eberhard A, Burlingame AL, Eberhard C, et al. Structural identification of autoinducer of Photobacterium fischeri luciferase[J]. Biochemistry, 1981, 20(9):2444-2449. [13]Zhang G, Zhang F, Ding G, et al. Acyl homoserine lactone-based quorum sensing in a Methanogenic archaeon[J]. ISME Journal, 2012, 6(7):1336-1344. [14]Ahlgren NA, Harwood CS, Schaefer AL, et al. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia[J]. Proc Natl Acad Sci USA, 2011, 108(17):7183-7188. [15]Lindemann A, Pessi G, Schaefer AL, et al. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum[J]. Proc Natl Acad Sci USA, 2011, 108(40):16765-16770. [16]Schaefer AL, Greenberg EP, Oliver CM, et al. A new class of homoserine lactone quorum-sensing signals[J]. Nature, 2008, 454(7204):595-596. [17]Dong Y, Xu J, Li X, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia Carotovora[J]. Proc Natl Acad Sci USA, 2000, 97(7):3526-3531. [18]Leadbetter JR, Greenberg EP. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax Paradoxus[J]. Journal of Bacteriology, 2000, 182(24):6921-6926. [19]Xue B, Chow JY, Baldansuren A, et al. Structural evidence of a productive active site architecture for an evolved quorum-quenching GKL lactonase[J]. Biochemistry, 2013, 52(13):2359-2370. [20] See-Too WS, Ee R, Lim Y, et al. AidP, a novel N-acyl homoserine lactonase gene from antarctic Planococcus sp[J]. Scientific Reports, 2017, 7:42968. [21] Zhang HB, Wang LH, Zhang LH. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens[J]. Proc Natl Acad Sci USA, 2002, 99(7):4638-4643. [22] Tang K, Su Y, Brackman G, et al. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda Olearia[J]. Appl Environ Microbiol, 2015, 81(2):774-782. [23] Wang W, Morohoshi T, Someya N, et al. AidC, a novel N-acylhomoserine lactonase from the potato root-associated cytophaga-flavobacteria-bacteroides(CFB)group bacterium Chryseobacterium sp. strain StRB126[J]. Appl Environ Microbiol, 2012, 78(22):7985-7992. [24]Morohoshi T, Tominaga Y, Someya N, et al. Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris[J]. Journal of Bioscience and Bioengineering, 2012, 113(1):20-25. [25]Krysciak D, Schmeisser C, Preuss S, et al. Involvement of multiple loci in quorum quenching of autoinducer l molecules in the nitrogen-fixing symbiont Rhizobium(Sinorhizobium)sp. strain NGR234[J]. Appl Environ Microbiol, 2011, 77(15):5089-5099. [26]Riaz K, Elmerich C, Raffoux A, et al. Metagenomics revealed a quorum quenching lactonase QlcA from yet unculturable soil bacteria[J]. Communications in Agricultural and Applied Biological Sciences, 2008, 73(2):3-6. [27]Chow JY, Wu L, Yew WS. Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily[J]. Biochemistry, 2009, 48(20):4344-4353. [28]Hong K, Koh C, Sam C, et al. Quorum quenching revisited-from signal decays to signalling confusion[J]. Sensors, 2012, 12(4):4661-4696. [29]Afriat L, Roodveldt C, Manco G, et al. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase[J]. Biochemistry, 2006, 45(46):13677-13686. [30]Hiblot J, Gotthard G, Chabriere E, et al. Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus[J]. PLoS One, 2012, 7:e4702810. [31]Park SY, Hwang BJ, Shin MH, et al. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities[J]. FEMS Microbiology Letters, 2006, 261(1):102-108. [32]Wang W, Morohoshi T, Ikenoya M, et al. AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum[J]. Appl Environ Microbiol, 2010, 76(8):2524-2530. [33]Mei G, Yan X, Turak A, et al. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase[J]. Appl Environ Microbiol, 2010, 76(15):4933-4942. [34]Schipper C, Hornung C, Bijtenhoorn P, et al. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa[J]. Appl Environ Microbiol, 2009, 75(1):224-233. [35]Garge SS, Nerurkar AS. Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50[J]. PLoS One, 2016, 11:e016734412. [36]Harel M, Aharoni A, Gaidukov L, et al. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atheroscleroticenzymes[J]. Nature Structural & Molecular Biology, 2004, 11(12):1253. [37]Park SY, Kang HO, Jang HS, et al. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching[J]. Appl Environ Microbiol, 2005, 71(5):2632-2641. [38]Romero M, Diggle SP, Heeb S, et al. Quorum quenching activity in Anabaena sp. PCC 7120:Identification of AiiC, a novel AHL-acylase[J]. FEMS Microbiology Letters, 2008, 280(1):73-80. [39]Lin YH, Xu JL, Hu JY, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes[J]. Molecular Microbiology, 2003, 47(3):849-860. [40]Huang JJ, Han JI, Zhang LH, et al. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1[J]. Appl Environ Microbiol, 2003, 69(10):5941-5949. [41]Morohoshi T, Nakazawa S, Ebata A, et al. Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015[J]. Bioscience Biotechnology and Biochemistry, 2008, 72(7):1887-1893. [42]Chen C, Chen C, Liao C, et al. A probable aculeacin a acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity[J]. BMC Microbiology, 2009, 9:89. [43]Huang JJ, Petersen A, Whiteley M, et al. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1[J]. Appl Environ Microbiol, 2006, 72(2):1190-1197. [44]Shepherd RW, Lindow SE. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology[J]. Appl Environ Microbiol, 2009, 75(1):45-53. [45]Terwagne M, Mirabella A, Lemaire J, et al. Quorum sensing and self-quorum quenching in the intracellular pathogen Brucellamelitensis[J]. PLoS One, 2013, 8:e8251412. [46]Czajkowski R, Krzyzanowska D, Karczewska J, et al. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase[J]. Environ Microbiol Reports, 2011, 3(1):59-68. [47]Maisuria VB, Nerurkar AS. Interference of quorum sensing by Delftia sp. VM4 depends on the activity of a novel N-acylhomoserine lactone-acylase[J]. PLoS One, 2015, 10(9):e138034. [48]Nasuno E, Suzuki T, Suzuki R, et al. Novel quorum quenching enzymes identified from draft genome of Roseomonas sp. TAS13[J]. Genomics Data, 2017, 12:22-23. [49]Sunder AV, Utari PD, Ramasamy S, et al. Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa[J]. Applied Microbiology and Biotechnology, 2017, 6(101):2383-2395. [50]Chowdhary PK, Keshavan N, Nguyen HQ, et al. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines[J]. Biochemistry, 2007, 46(50):14429-14437. [51]Uroz S, Chhabra SR, Camara M, et al. N-acylhomoserine lactone quorum-ssensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities[J]. Microbiology-SGM, 2005, 151(10):3313-3322. [52]Chan K, Atkinson S, Mathee K, et al. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale(Ginger)rhizosphere:co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia[J]. BMC Microbiology, 2011, 11:51. [53]Barber CE, Tang JL, Feng JX, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule[J]. Molecular Microbiology, 1997, 24(3):555-566. [54]Wang LH, He YW, Gao YF, et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues[J]. Mol Microbiol, 2004, 51(3):903-912. [55]Newman KL, Chatterjee S, Ho KA, et al. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors[J]. Molecular Plant-Microbe Interactions, 2008, 21(3):326-334. [56]Caicedo JC, Villamizar S, Ferro MIT, et al. Bacteria from the citrus phylloplane can disrupt cell-cell signalling in Xanthomonas citri and reduce citrus canker disease severity[J]. Plant Pathology, 2016, 65(5):782-791. [57]Pustelny C, Albers A, Bueldt-Karentzopoulos K, et al. Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa[J]. Chemistry & Biology, 2009, 16(12):1259-1267. [58]Soh EY, Chhabra SR, Halliday N, et al. Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule[J]. Environ Microbiol, 2015, 17(11):4352-4365. [59]Mueller C, Birmes FS, Rueckert C, et al. Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation[J]. Appl Environ Microbiol, 2015, 81(22):7720-7729. [60]Ma R, Qiu S, Jiang Q, et al. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus[J]. Int J Med Microbiol, 2017, 307(4-5):257:267. [61]Roy V, Fernandes R, Tsao C, et al. Cross species quorum quenching using a native AI-2 processing enzyme[J]. ACS Chemical Biology, 2010, 5(2):223-232. [62]Weiland-Braeuer N, Kisch MJ, Pinnow N, et al. Highly effective inhibition of biofilm formation by the first metagenome-derived Al-2 quenching enzyme[J]. Front Microbiol, 2016, 7:1098. [63]Shinohara M, Nakajima N, Uehara Y. Purification and characterization of a novel esterase(beta-hydroxypalmitate methyl ester hydrolase)and prevention of the expression of virulence by Ralstonia solanacearum[J]. J Appl Microbiol, 2007, 1:152-162. [64]Achari GA, Ramesh R. Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester(3OH-PAME), a quorum sensing molecule of Ralstonia solanacearum[J]. Letters in Applied Microbiology, 2015, 60(5):447-455. |
[1] | HUANG Ya-ning, ZHANG Hai-jiao, HAN Yu-qian, LIU Zun-ying. Effects of Supercritical CO2 Combined with Ginger Essential Oil on the Sterilization of Vibrio parahaemolyticus and Its Mechanism [J]. Biotechnology Bulletin, 2023, 39(5): 297-305. |
[2] | HUANG Xiang-mei, WU Ya-qian, LIU Ying, LIANG Jia-ye, SU Wei-ming. Inhibitory Effects of AI-2 Quorum Sensing Inhibitors from Marine Lactic Acid Bacteria on Listeria monocytogenes [J]. Biotechnology Bulletin, 2019, 35(4): 36-42. |
[3] | ZHOU Heng, JIANG Yun, XU Ye-xiang, QIAN Sheng-hui, MIAO Li. Research on Quorum Sensing Inhibitory Activity and Culture Condition of a Marine Streptomyces parvulus [J]. Biotechnology Bulletin, 2019, 35(10): 137-143. |
[4] | CHEN Shao-wei, WU Cheng, SU Yue-hua, CAI Bin-bin, XIE Pan-pan, YANG Mei. Cloning and Functional Identification of the 5' flanking Region of the aiiA Gene from Bacillus thuringiensis [J]. Biotechnology Bulletin, 2018, 34(11): 136-143. |
[5] | MAO Wen, TIAN Lu, GONG Guo-li. Research Progress on Bacteriocins and Their Potential New Applications [J]. Biotechnology Bulletin, 2018, 34(10): 35-40. |
[6] | PAN Yu-rong, ZHANG Cai-li, ZHU Su-qin, ZENG Ming-yong. Inhibition of Brominated Furanone to Quorum Sensing Regulating Behaviors of Vibrio anguillarum [J]. Biotechnology Bulletin, 2017, 33(4): 231-237. |
[7] | PAN Yu-rong, ZHANG Cai-li, ZHU Su-qin, SUN Xiu-jiao, ZENG Ming-yong. Detection of Quorum Sensing Signal Molecules in Vibrio anguillarum Isolated From Litopenaeus vannamei [J]. Biotechnology Bulletin, 2016, 32(3): 142-147. |
[8] | ZHANG Shu-mei,XU Xiang-rong,XU Hao. Research Progress on Quorum Sensing System of Bacterial Biofilm [J]. Biotechnology Bulletin, 2016, 32(12): 19-22. |
[9] | Ai Qiushi, Zhang Zhe, Qu Lingbo, Liu Fang, Zhao Qian, Song Shuishan. Preliminarily Research on Involvement of Arabidopsis GCR2 Responsing to N-Butyryl-DL-homoserine Lactone [J]. Biotechnology Bulletin, 2015, 31(8): 94-101. |
[10] | Xing Qifan, Liu Pengfu, Shi Jiping, Sun Yumei. Research Progress on Bacterial Quorum Quenching Enzymes [J]. Biotechnology Bulletin, 2015, 31(10): 48-55. |
[11] | Liang Xinyan, Ruan Haihua. Quorum Sensing and Its Application in Preventing and Therapeutic Effect for Pathogenic Bacteria [J]. Biotechnology Bulletin, 2015, 31(1): 33-38. |
[12] | Zhang Caili, Zhu Suqin, Wang Ying, Sun Xiujiao, Zeng Mingyong. Isolation, Identification and Quorum Sensing of a Serratia spp. [J]. Biotechnology Bulletin, 2014, 0(7): 150-155. |
[13] | Huang Yuanyuan, Ma Hong, Jia Zhenhua, Huang Yali , Song Shuishan, Zhang Xia. Isolation and Identification of Accumulation of Quorum Signal Molecules Strains from the Trichoplusia ni Midgut [J]. Biotechnology Bulletin, 2014, 0(7): 196-200. |
[14] | Wang Ying, Zhu Suqin, Zhang Caili, Zeng Mingyong. Detection of Quorum Sensing in Vibrio parahaemolyticus Isolated from Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2014, 0(3): 146-150. |
[15] | Liu Zheng, Gao Shuangcheng, Yang Shangjun, Sun Ning, Du Rui, Zhao Yanhong. Establishment of a Novel Prokaryotic Inducible Expression System [J]. Biotechnology Bulletin, 2013, 0(8): 145-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||