[1]Maeda RN, Barcelos CA, Santa Anna LM, et al. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation[J]. J Biotechnol, 2013, 163(1):38-44. [2]Ncube T, Howard RL, Abotsi EK, et al. Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation[J]. Industrial Crops & Products, 2012, 37(1):118-123. [3]Dhillon GS, Kaur S, Brar SK, et al. Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation[J]. Industrial Crops & Products, 2012, 38(3):6-13. [4]段金廒, 宿树兰, 等. 中药废弃物的转化增效资源化模式及其研究与实践[J]. 中国中药杂志, 2013, 38(23):3991-3996. [5]敖杨, 等. 金莲花药渣发酵物对肉仔鸡生产性能、抗氧化指标及免疫功能的影响[J]. 饲料研究, 2014(11):38-43. [6] 黄凡, 谭显东, 胡伟, 等. 黑曲霉固态发酵三七渣产纤维素酶[J]. 环境工程学报, 2015, 9(9):4547-4552. [7]方诗琦. 甘草药渣中黄酮类活性成分研究[D]. 南京:南京中医药大学, 2016. [8]豆康宁, 王飞, 罗海澜, 等. 甘草及提取物在食品中的应用进展[J]. 食品研究与开发, 2014(21):140-142. [9]白阳, 孙正旺, 刘春莹, 等. 甘草总黄酮的制备及其抗皮肤老化功能[J]. 大连工业大学学报, 2015(5):317-319. [10]李琼翠, 段晓健, 等. 酸碱复合处理和酶浓度对药渣纤维素水解效率的影响[J]. 化工进展, 2013(9):2200-2204. [11] 张娟, 卿德刚, 孙宇, 等. 甘草药渣中甘草查尔酮A的制备[J]. 新疆中医药, 2016, 34(2):39-40. [12] Li Q, Wei TN, Jin CW. Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch[J]. Microb Cell Fact, 2014, 13(1):157. [13]Delabona PS, Farinas CS, Da SM, et al. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production[J]. Bioresour Technol, 2012, 107(2):517. [14]Dave BR, Parmar P, Sudhir A, et al. Cellulases production under solid state fermentation using agro waste as a substrate and its application in saccharification by Trametes hirsuta NCIM[J]. Journal of Microbiology Biotechnology & Food Sciences, 2015, 04(3):203-208. [15]Zhao XH, Wang W, Tong B, et al. A Newly Isolated Penicillium oxalicum 16 Cellulase with high efficient synergism and high tolerance of Monosaccharide[J]. Appl Biochem Biotechnol, 2016, 178(1):173-183. [16]Xu MS, Chen S, Wang WQ, et al. Employing bi-functional enzymes for enhanced extraction of bioactives from plants:flavonoids as an example[J]. J Agric Food Chem, 2013, 61(33):7941-8. [17]S?rensen A, Teller PJ, et al. Onsite enzyme production during bioe-thanol production from biomass:screening for suitable fungal stra-ins. [J]. Appl Biochem Biotechnol, 2011, 164(7):1058-1070. [18]李洋, 高晓蓉, 张健, 等. 草酸青霉菌生产纤维素酶的反应条件优化[J]. 生物技术通报, 2016, 32(2):152-157. [19]李争明, 张娟, 等. 纤维素酶产生菌的筛选、鉴定及发酵产酶条件优化[J]. 生物技术通报, 2015, 31(5):146-152. [20] Leite P, Salgado JM, et al. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation[J]. Bioresour Technol, 2016, 214:737-746. [21]Kim JS, Lee YY, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass[J]. Bioresour Technol, 2015, 199:42-48. [22]Saini R, Saini JK, Adsul M, et al. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. [J]. Bioresour Technol, 2015, 188:240-246. [23]Lin C, Shen Z, Qin WS. Characterization of xylanase and cellulase produced by a newly isolated Aspergillus fumigatus, N2 and its efficient saccharification of barley straw[J]. Applied Biochemistry & Biotechnology, 2017, 182(2):559-569. |