[1] Hagen C, Siegmund S, Braune W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis(Volvocales, Chlorophyta)during aplanospore formation[J]. European Journal of Phycology, 2002, 37(2):217-226. [2] Wayama M, Ota S, Matsuura H, et al. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis[J]. PLoS One, 2013, 8(1):1-9. [3] Pérez-López P, González-García S, Jeffryes C, et al. Life-cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae:from lab to pilot scale[J]. Journal of Cleaner Production, 2014, 64:332-344. [4] Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products[J]. Algal Research, 2014, 6:52-63. [5] 高桂玲, 成家杨, 马炯. 雨生红球藻和虾青素的研究[J]. 水产学报, 2014, 38(2):297-304. [6] Kang CD, Han SJ, Choi SP, et al. Fed-batch culture of astaxanthin-rich Haematococcus pluvialis by exponential nutrient feeding and stepwise light supplementation[J]. Bioprocess and Biosystems Engineering, 2010, 33(1):133-139. [7] Park JC, Choi SP, Hong ME, et al. Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation[J]. Bioprocess and Biosystems Engineering, 2014, 37(10):2039-2047. [8] Yoo JJ, Choi SP, Kim BW, et al. Optimal design of scalable photobioreactor for phototropic culturing of Haematococcus pluvialis[J]. Bioprocess and Biosystems Engineering, 2012, 35(1-2):309-315. [9] Hata N, Ogbonna JC, Hasegawa Y, et al. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture[J]. Journal and Applied Phycology, 2001, 13(5):395-402. [10] Göksan T, İlknur Ak, Kılıç C. Growth characteristics of the alga Haematococcus pluvialis flotow as affected by nitrogen source, vitamin, light and aeration[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2011, 11(3):377-383. [11] Jeon YC, Cho CW, Yun YS. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis[J]. Enzyme and Microbial Technology, 2006, 39(3):490-495. [12] 韦韬, 顾文辉, 李健, 等. 不同碳氮浓度对雨生红球藻生长及虾青素累积的影响[J]. 海洋科学, 2012, 36(11):55-61. [13] Cheng J, Li K, Yang Z, et al. Enhancing the growth rate and astaxanthin yield of Haematococcus pluvialis by nuclear irradiation and high concentration of carbon dioxide stress[J]. Bioresource Technology, 2016, 204:49-54. [14] Chekanov K, Schastnaya E, Solovchenko A, et al. Effects of CO 2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis[J]. Journal of Photochemistry and Photobiology, 2017, 117:58-66. [15] 王建沅, 周成旭, 严小军, 等. 雨生红球藻在红光下的生长及营养盐消耗特征[J]. 水生生物学报, 2014, 38(6):1135-1141. [16] Wilbur KM, Anderson NG. Electrometric and colorimetric determination of carbonic anhydrase[J]. J Biol Chem, 1948, 176(1):147-154. [17] Moskvin OV, Razguliayeva AY, Shutova TV, et al. Carbonic anhydrase activity of different photosystem II preparations[J]. Photosynthesis Mechanisms and Effects, 1998, 11(7):1201-1204. [18] Jin SH, Hong J, Li XQ, et al. Antisense inhibition of Rubisco activase increases Rubisco content and alters the proportion of Rubisco activase in stroma and thylakoids in chloroplasts of rice leaves[J]. Annals of Botany, 2006, 97(5):739-744. [19] Boussiba S, Vonshak A. Astaxanthin accumulation in the green alga Haematococcus pluvialis[J]. Plant and Cell Physiology, 1991, 32(7):1077-1082. [20] Chen BB, Zou DH, Zhu MJ, et al. Effects of CO 2 levels and light intensities on growth and amino acid contents in red seaweed Gracilaria lemaneiformis[J]. Aquaculture Research, 2017, 48(6):1-8. [21] Cheng J, Lu HX, Huang Y, et al. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO 2 stress[J]. Bioresource Technology, 2016, 203:220-227. [22] Sun YY, Wang CH. The optimal growth conditions for the biomass production of Isochrysis galbana and the effects that phosphorus, Zn 2+ , CO 2 , and light intensity have on the biochemical composition of Isochrysis galbana and the activity of extracellular CA[J]. Biotechnology and Bioprocess Engineering, 2009, 14(2):225-231. [23] 包楠欧, 史定刚, 关万春, 等. CO 2 及光强对南麂列岛铜藻生长的影响[J]. 浙江农业学报, 2014, 26(3):649-655. [24] Shah MR, Liang Y, Cheng JJ, et al. Astaxanthin-producing green microalga Haematococcus pluvialis:from single cell to high value commercial products[J]. Frontiers in Plant Science, 2016, 7:531. [25] 陶云莹, 王巧晗, 赫勇, 等. 光照强度和温度对雨生红球藻生长、虾青素及内源脱落酸积累的影响[J]. 中国海洋大学学报, 2016, 46(7):54-62. [26] 梁英, 冯力霞, 尹翠玲, 等. 叶绿素荧光技术在微藻环境胁迫研究中的应用现状及前景[J]. 海洋科学, 2007, 31(1):71-76. [27] Snel JFH, Kooten OV. The use of chlorophyll fluorescence and other non-invasive spectroscopic techniques in plant stress physiology[J]. Photosynthesis Research, 1990, 25:147-150. [28] Badger MR, Price GD. The role of carbonic anhydrase in photosynthesis[J]. Annual Review of Plant Biology, 2003, 45(1):369-392. [29] Bozzo GG, Colman B, Matsuda Y. Active transport of CO 2 and bicarbonate is induced in response to external CO 2 concentration in the green alga Chlorella kessleri[J]. J Exp Bot, 2000, 51(349):1341-1348. [30] 黄瑾, 夏建荣, 邹定辉. 微藻碳酸酐酶的特性及其环境调控[J]. 植物生理学通讯, 2010, 46(7):631-636. [31] 潘璐, 刘杰才, 李晓静, 等. 高温和加富CO 2 温室中黄瓜Rubisco活化酶与光合作用的关系[J]. 园艺学报, 2014, 41(8):1591-1600. [32] Drake BG, Azc6n-Bieto J, Berry JA, et al. Does elevated CO 2 inhibit plant mitochondrial respiration in green plants[J]. Plant, Cell and Environment, 1999, 22(6):649-657. [33] 张道允, 许大全. 植物光合作用对CO 2 浓度增高的适应机制[J]. 植物生理与分子生物学学报, 2007, 33(6):463-470. |