Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (7): 31-39.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0360
Previous Articles Next Articles
PANG Lei, ZHU Ying, JIN Zhong-cai, XIA Xi-hua, LI Rui-xi
Received:
2018-06-20
Online:
2018-07-26
Published:
2018-08-01
PANG Lei, ZHU Ying, JIN Zhong-cai, XIA Xi-hua, LI Rui-xi. Mechanism of Plant Development Regulation by Endomembrane Trafficking[J]. Biotechnology Bulletin, 2018, 34(7): 31-39.
[1] Morita MT, Shimada T.The plant endomembrane system-A complex network supporting plant development and physiology[J]. Plant and Cell Physiology, 2014, 55(4):667-671. [2] Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K.Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis[J]. Plant Cell, 2006, 18(3):715-730. [3] Viotti C, Bubeck J, Stierhof YD, et al.Endocytic and secretory traffic in Arabidopsis merge in the trans-golgi network/early endosome, an independent and highly dynamic organelle[J]. Plant Cell, 2010, 22(4):1344-1357. [4] Herman E, Schmidt M.Endoplasmic reticulum to vacuole trafficking of endoplasmic reticulum bodies provides an alternate pathway for protein transfer to the vacuole[J]. Plant Physiology, 2004, 136(3):3440-3446. [5] Reyes FC, Chung T, Holding D, et al.Delivery of prolamins to the protein storage vacuole in maize aleurone cells[J]. Plant Cell, 2011, 23(2):769-784. [6] Kulich I, Zarsky V.Autophagy-related direct membrane import from ER/Cytoplasm into the vacuole or apoplast:a hidden gateway also for secondary metabolites and phytohormones?[J]. International Journal of Molecular Sciences, 2014, 15(5):7462-7474. [7] Viotti C.ER and vacuoles:never been closer[J]. Front Plant Sci, 2014, 5:20. [8] Viotti C, Krüger F, Krebs M, et al.The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis[J]. Plant Cell, 2013, 25(9):3434-3449. [9] Zwiewka M, Feraru E, Möller B, et al.The AP-3 adaptor complex is required for vacuolar function in Arabidopsis[J]. Cell Research, 2011, 21(12):1711-1722. [10] Feraru E, Paciorek T, Feraru MI, et al.The AP-3 beta adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis[J]. Plant Cell, 2010, 22(8):2812-2824. [11] Cui Y, Shen J, Gao C, et al.Biogenesis of plant prevacuolar multivesicular bodies[J]. Molecular Plant, 2016, 9(6):774-786. [12] Wolfenstetter S, Wirsching P, Dotzauer D, et al.Routes to the tonoplast:the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts[J]. Plant Cell, 2012, 24(1):215-232. [13] Ebine K, Inoue T, Ito J, et al.Plant vacuolar trafficking occurs through distinctly regulated pathways[J]. Current Biology, 2014, 24(12):1375-1382. [14] Brillada C, Rojas-Pierce M.Vacuolar trafficking and biogenesis:a maturation in the field[J]. Current Opinion in Plant, Biology, 2017, 40:77-81. [15] Gälweiler L, Guan C, Müller A, et al.Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue[J]. Science, 1998, 282(5397):2226-2230. [16] Armengot L, Marques-Bueno MM, Jaillais Y.Regulation of polar auxin transport by protein and lipid kinases[J]. Journal of Experimental Botany, 2016, 67(14):4015-4037. [17] Mravec J, Skůpa P, Bailly A, et al.Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter[J]. Nature, 2009, 459(7250):1136-1140. [18] Friml J.Subcellular trafficking of PIN auxin efflux carriers in auxin transport[J]. Eur J Cell Biol, 2010, 89(2-3):231-235. [19] Friml J, Vieten A, Sauer M, et al.Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis[J]. Nature, 2003, 426(6963):147-153. [20] Muday GK, Peer WA, Murphy AS.Vesicular cycling mechanisms that control auxin transport polarity[J]. Trends in Plant Science, 2003, 8(7):301-304. [21] Fu Y, Yang ZB.Rop GTPase:a master switch of cell polarity development in plants[J]. Trends in Plant Science, 2001, 6(12):545-547. [22] Bucci C, Parton RG, Mather IH, et al.The small Gtpase rab5 functions as a regulatory factor in the early endocytic pathway[J]. Cell, 1992, 70(5):715-728. [23] Dhonukshe P, Tanaka H, Goh T, et al.Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions[J]. Nature, 2008, 456(7224):962-U975. [24] Fan L, Hao H, Xue Y, et al.Dynamic analysis of Arabidopsis AP2 sigma subunit reveals a key role in clathrin-mediated endocytosis and plant development[J]. Development, 2010, 140(18):3826-3837. [25] Kitakura S, Vanneste S, Robert S, et al.Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis[J]. Plant Cell, 2011, 23(5):1920-1931. [26] Wang C, Yan X, Chen Q, et al.Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis[J]. Plant Cell, 2013, 25(2):499-516. [27] Kleine-Vehn J, Wabnik K, Martinière A, et al.Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane[J]. Mol Syst Biol, 2011, 7:540. [28] Geldner N, Friml J, Stierhof YD, et al.Auxin transport inhibitors block PIN1 cycling and vesicle trafficking[J]. Nature, 2001, 413(6854):425-428. [29] Steinmann T, Geldner N, Grebe M, et al.Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF[J]. Science, 1999, 286(5438):316-318. [30] Kleine-Vehn J, Huang F, Naramoto S, et al.PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-Independent trafficking in Arabidopsis[J]. Plant Cell, 2009, 21(12):3839-3849. [31] Li R, Rodriguez-Furlan C, Wang J, et al.Different endomembrane trafficking pathways establish apical and basal polarities[J]. Plant Cell, 2017, 29(1):90-108. [32] Drdová EJ, Synek L, Pečenková T, et al.The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis[J]. Plant J, 2013, 73(5):709-719. [33] Tan XY, Feng YH, Liu YL, Bao YQ.Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root[J]. Plant Science, 2016, 250:97-104. [34] Ganguly A, Park M, Kesawat MS, Cho HT.Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins[J]. Plant Cell, 2014, 26(4):1570-1585. [35] Dal Bosco C, Dovzhenko A, Liu X, et al.The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis[J]. Plant J, 2012, 71(5):860-870. [36] Ding Z, Wang B, Moreno I, et al.ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis[J]. Nat Commun, 2012, 3:941. [37] Dal Bosco C, Dovzhenko A, Palme K.Intracellular auxin transport in pollen:PIN8, PIN5 and PILS5[J]. Plant Signaling & Behavior, 2012, 7(11):1504-1505. [38] Krecek P, Skupa P, Libus J, et al.The PIN-FORMED(PIN)protein family of auxin transporters[J]. Genome Biology, 2009, 10(12):249. [39] Simon S, Skůpa P, Viaene T, et al.PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis[J]. New Phytologist, 2016, 211(1):65-74. [40] Ditengou FA, Gomes D, Nziengui H, et al.Characterization of auxin transporter PIN6 plasma membrane targeting reveals a function for PIN6 in plant bolting[J]. New Phytologist, 2018, 217(4):1610-1624. [41] Salazar-Henao JE, Velez-Bermudez IC, Schmidt W.The regulation and plasticity of root hair patterning and morphogenesis[J]. Development, 2016, 143(11):1848-1858. [42] D'Souza-Schorey C, Chavrier P. ARF proteins:roles in membrane traffic and beyond[J]. Nature Reviews Molecular Cell Biology, 2006, 7(5):347-358. [43] Vernoud V, Horton AC, Yang Z, Nielsen E.Analysis of the small GTPase gene superfamily of Arabidopsis[J]. Plant Physiology, 2003, 131(3):1191-1208. [44] Preuss ML, Schmitz AJ, Thole JM, et al.A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana[J]. J Cell Biol, 2006, 172(7):991-998. [45] Assaad FF, Huet Y, Mayer U, Jurgens G.The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE[J]. J Cell Biol, 2001, 152(3):531-543. [46] Dindas J, Scherzer S, Roelfsema MRG, et al.AUX1-mediated root hair auxin influx governs SCF(TIR1/AFB)-type Ca2+ signaling[J]. Nat Commun, 2018, 9(1):1174. [47] Martens S, Kozlov MM, McMahon HT. How synaptotagmin promotes membrane fusion[J]. Science, 2007, 316(5828):1205-1208. [48] Kang E, Zheng M, Zhang Y, et al.The microtubule-associated protein MAP18 Affects ROP2 GTPase activity during root hair growth[J]. Plant Physiology, 2017, 174(1):202-222. [49] Synek L, Schlager N, Eliás M, et al.AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development[J]. Plant J, 2006, 48(1):54-72. [50] Ovecka M, Berson T, Beck M, et al.Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(9):2999-3019. [51] Zhao X, Zhang X, Qu Y, et al.Mapping of membrane lipid order in root apex zones of Arabidopsis thaliana[J]. Front Plant Sci, 2015, 6:1151. [52] Willemsen V, Friml J, Grebe M, et al.Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function[J]. Plant Cell, 2003, 15(3):612-625. [53] Cui Y, Zhao Q, Gao C, et al.Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis[J]. Plant Cell, 2014, 26(5):2080-2097. [54] Cui Y, Zhao Q, Xie HT, et al.MONENSIN SENSITIVITY1(MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1(CCZ1)-mediated Rab7 activation regulates tapetal programmed cell death and pollen development[J]. Plant Physiology, 2017, 173(1):206-218. [55] Nordmann M, Cabrera M, Perz A, et al.The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7[J]. Current Biology, 2010, 20(18):1654-1659. [56] Balderhaar HJ, Ungermann C.CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion[J]. Journal of Cell Science, 2013, 126(6):1307-1316. [57] Takemoto K, Ebine K, Askani JC, et al.Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10):2457-2466. [58] Hunter MR, Scourfield EJ, Emmott E, Graham SC.VPS18 recruits VPS41 to the human HOPS complex via a RING-RING interaction[J]. The Biochemical Journal, 2017, 474(21):3615-3626. [59] Hao L, Liu J, Zhong S, et al.AtVPS41-mediated endocytic pathway is essential for pollen tube-stigma interaction in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22):6307-6312. [60] Tan X, Wei J, Li B, et al.AtVPS11 is essential for vacuole biogenesis in embryo and participates in pollen tube growth in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2017, 491(3):794-799. [61] Zhou LZ, Li S, Feng QN, et al.Protein S-ACYL Transferase10 is critical for development and salt tolerance in Arabidopsis[J]. Plant Cell, 2013, 25(3):1093-1107. [62] Feng QN, Li S, Zhang Y.Update on adaptor protein-3 in Arabidopsis[J]. Plant Signaling & Behavior, 2017, 12(8):e1356969. [63] Feng QN, Liang X, Li S, & Zhang Y. The ADAPTOR PROTEIN-3 complex mediates pollen tube growth by coordinating vacuolar targeting and organization[J]. Plant Physiology, 2018, 177(1):216-225. [64] Feng C, Wang JG, Liu HH, Li S, Zhang Y.Arabidopsis adaptor protein 1G is critical for pollen development[J]. Journal of Integrative Plant Biology, 2017, 59(9):594-599. [65] Weitbrecht K, Müller K, & Leubner-Metzger G. First off the mark:early seed germination[J]. Journal of Experimental Botany, 2011, 62(10):3289-3309. [66] Koornneef M, Bentsink L, Hilhorst H.Seed dormancy and germination[J]. Current Opinion in Plant Biology, 2002, 5(1):33-36. [67] Arc E, Sechet J, Corbineau F, et al.ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination[J]. Front Plant Sci, 2013, 4:63. [68] Hancock JT, Neill SJ, Wilson ID.Nitric oxide and ABA in the control of plant function[J]. Plant Science, 2011, 181(5):555-559. [69] Arc E, Galland M, Godin B, et al.Nitric oxide implication in the control of seed dormancy and germination[J]. Front Plant Sci, 2013, 4:346. [70] Peng J, Harberd NP.The role of GA-mediated signalling in the control of seed germination[J]. Current Opinion in Plant Biology, 2002, 5(5):376-381. [71] Das SS, Karmakar P, Nandi AK, Sanan-Mishra N.Small RNA mediated regulation of seed germination[J]. Front Plant Sci, 2015, 6. [72] Penfield S, King J.Towards a systems biology approach to understanding seed dormancy and germination[J]. Proc Biol Sci, 2009, 276(1673):3561-3569. [73] Li L, Shimada T, Takahashi H, et al.MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana[J]. Plant Cell, 2006, 18(12):3535-3547. [74] Li L, Shimada T, Takahashi H, et al.MAG2 and three MAG2-INTERACTING PROTEINs form an ER-localized complex to facilitate storage protein transport in Arabidopsis thaliana[J]. Plant J, 2013, 76(5):781-791. [75] Zhao P, Liu F, Zhang B, et al.MAIGO2 is involved in abscisic acid-mediated response to abiotic stresses and Golgi-to-ER retrograde transport[J]. Physiologia Plantarum, 2013, 148(2):246-260. |
[1] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[2] | LIU Chao, CHU Hong-long, WU Li-fang, TANG Li-zhou, HAN Li-hong. Regulation Mechanism of Phosphate Homeostasis in Plants [J]. Biotechnology Bulletin, 2022, 38(2): 184-194. |
[3] | MO Li-jie, LIU Xia-tong, LI Hui, LU Hai. On the Function of Plant Cysteine Protease in Plant Growth and Development [J]. Biotechnology Bulletin, 2021, 37(6): 202-212. |
[4] | PENG Wen-chao, LIU Jian-xin, WANG Di-ming. Research Progress on Metabolic Causes for Hypoxic Stress in Mammalian Animals [J]. Biotechnology Bulletin, 2021, 37(1): 262-271. |
[5] | WANG Li-guang, YE Chun-lei, CHEN Jun, ZHU Tian-di, LI Jing-wen. Na+,K+/H+ Antiporter in Plant:pH Homeostasis and Vesicle Trafficking [J]. Biotechnology Bulletin, 2020, 36(4): 151-158. |
[6] | ZHU Jian-feng, YANG Xiu-yan, WU Hai-wen, ZHANG Hua-xin. Research Advances in Salt and Alkali Tolerance Improvement Technology at the Seed Germination Stage [J]. Biotechnology Bulletin, 2020, 36(2): 158-168. |
[7] | LI Zong-jie, DI Di, LI Bei-bei. The Relationship Between Lung Microbiota and Respiratory Diseases [J]. Biotechnology Bulletin, 2020, 36(2): 188-192. |
[8] | LI Xiao-yuan, XIE Li-nan. Research Progress in Na+ Regulation Mechanism of Plants Under Salt Stress [J]. Biotechnology Bulletin, 2019, 35(7): 148-155. |
[9] | ZHOU Li-ming, FANG Wei. Effects of Plasma Membrane Localization of Arabidopsis thaliana CBL9 on the Growth of Pollen Tube Tip [J]. Biotechnology Bulletin, 2019, 35(5): 58-63. |
[10] | JIAO Jian, LIU Ke-han, TIAN Chang-fu. Advances in Mechanisms and Regulation of Iron Uptake and Metabolism in Rhizobia [J]. Biotechnology Bulletin, 2019, 35(10): 7-17. |
[11] | WU Zhi-ming,ZHONG Min,LU Cheng-jian,ZHU Man-ning,DU Qi-feng,LI Kun-tai. Effects of Novel Antifungalmycin N2 Crude Extract from Streptomyces sp. N2 on Germination of Rice Seed [J]. Biotechnology Bulletin, 2017, 33(9): 153-159. |
[12] | DI Hui, ZHANG Ji-quan, Lü Jian-zhou, MA Qi-yun. Effects of Flor-essence on Seed Germination and Seedling Growth in Wheat [J]. Biotechnology Bulletin, 2017, 33(8): 58-62. |
[13] | Yang Wenling, Yue Dandan, Li Guanjie, Liu Yingying, Ning Meng, Liu Li, Gong Tao, Wang Jiwen, Chen Guocan. The Effects of Lead and Chromium Stresses on Seed Germination and Proline Content in Wheat Seedlings [J]. Biotechnology Bulletin, 2015, 31(12): 110-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||