Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (7): 48-56.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0425
Previous Articles Next Articles
GUO Bin-hui1, DAI Yi2, SONG Li2
Received:
2018-05-07
Online:
2018-07-26
Published:
2018-08-01
GUO Bin-hui, DAI Yi, SONG Li. Research Progress on the Effects of Phytohormones on Crop Root System Development Under Drought Condition[J]. Biotechnology Bulletin, 2018, 34(7): 48-56.
[1] Robertson GP, Bruulsema TW, Gehl RJ, et al.Nitrogen-climate interactions in US agriculture[J]. Biogeochemistry, 2013, 114:41-70. [2] 中华人民共和国年国民经济和社会发展统计公报[R]. 中华人民共和国国家统计局.华人民共和国年国民经济和社会发展统计公报[R]. 中华人民共和国国家统计局. 北京, 2016. [3] Thu NB, Nguyen QT, Hoang XL, et al.Evaluation of drought tolerance of the Vietnamese soybean cultivars provides potential resources for soybean production and genetic engineering[J]. BioMed Research International, 2014, 2014:809736. [4] Pierik R, Testerink C.The art of being flexible:how to escape from shade, salt, and drought[J]. Plant Physiology, 2014, 166(1):5-22. [5] Prince SJ, Song L, Qiu D, et al.Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean[J]. BMC Genomics, 2015, 16:132. [6] Wu SW, Hu CX, Tan QL, et a1. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat(Triticum aestivum)under drought stress[J]. Plant Physiology and Biochemistry, 2014, 83:365-374. [7] 潘瑞炽, 王小菁, 李娘辉. 植物生理学[M]. 北京:高等教育出版社, 2004. [8] Benesova M, Hola D, Fischer L, et a1. The physiology and proteomics of drought tolerance in maize:early stomatal closure as a cause of lower tolerance to short term dehydration[J]. PLoS One, 2012, 7(6):e38017. [9] Tiwari S, Lata C, Chauhan PS, et al.A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants[J]. Current Genomics, 2017, 18(6):469-482. [10] Malamy JE.Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant Cell Environ, 2005, 28:67-77. [11] Osmont KS, Sibout R, Hardtke CS.Hidden branches:developments in root system architecture[J]. Annu Rev Plant Biol, 2007, 58:93-113. [12] Kunert KJ, Vorster BJ, Fenta BA, et al.Drought stress responses in soybean roots and nodules[J]. Front Plant Sci, 2016, 7:1015. [13] Prince SJ, Valliyodan B, Ye H, et al.Understanding genetic control of root system architecture in soybean:Insights into the genetic basis of lateral root number[J]. Plant Cell Environ, 2018, doi:10. 1111/pce. 13333. [14] Chimungu JG, Maliro MFA, Nalivata PC, et al.Utility of root cortical aerenchyma under water limited conditions in tropical maize(Zea mays, L.)[J]. Field Crops Research, 2015, 171:86-98. [15] Ye H, Roorkiwal M, Valliyodan B, et al.Genetic diversity of root system architecture in response to drought stress in grain legumes[J]. J Exp Bot, 2018, 69(13):3267-3277. [16] 赵坤, 董守坤, 刘丽君, 等. 干旱胁迫对春大豆开花期根系生理特性的影响[J]. 大豆科学, 2010, 29:437-439. [17] 闫春娟, 王文斌, 涂晓杰, 等. 不同生育时期干旱胁迫对大豆根系特性及产量的影响[J]. 大豆科学, 2013, 1:59-62. [18] Cutler SR, Rodriguez PL, Finkelstein RR, et a1. Abscisic acid:Emergence of a core signaling network[J]. Annu Rev Plant Biol, 2010, 61:651-679. [19] Schroeder JI, Kwak JM, Alln GJ.Guard cell abscisic acid signaling and engineering drought hardiness in plants[J]. Nature, 2001, 410:327-330. [20] Verslues PE, Zhu JK.Before and beyond ABA:upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress[J]. Biochemical Society Transactions, 2005, 33(2):375-379. [21] Ikegami K, Okamoto M, Seo M, et al.Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit[J]. J Plant Res, 2009, 122(2):235-243. [22] Zhang JH, Zhang XP, Liang JS.Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment[J]. New Phytol, 1995, 131:329-336. [23] Shanrp E, Lenoble ME.ABA, ethylene and the control of shoot and root growth under water stress[J]. J Exp Bot, 2002, 53:33-37. [24] Li C, Shen H, Wang T, et al.ABA regulates subcellular redistribution of OsABI-LIKE2, a negative regulator in ABA signaling, to control root architecture and drought resistance in Oryza sativa[J]. Plant Cell Physiol, 2015, 56(12):2396-2408. [25] Shi L, Guo M, Ye N, et al.Reduced ABA accumulation in the root system is caused by ABA exudation in upland rice(Oryza sativa L. var. Gaoshan1)and this enhanced drought adaptation[J]. Plant Cell Physiol, 2015, 56(5):951-964. [26] Ji H, Li X.ABA mediates PEG-mediated premature differentiation of root apical meristem in plants[J]. Plant Signal Behav, 2014, 9(11):e977720. [27] Wilkinson S, Davies WJ.ABA-based chemical signalling:the co-ordination of responses to stress in plants[J]. Plant Cell Environ, 2002, 25:195-210. [28] Saini S, Sharma I, Kaur N, et al.Auxin:a master regulator in plant root development[J]. Plant Cell Rep, 2013, 32(6):741-757. [29] 闫志利, 轩春香牛俊义, 等. 干旱胁迫及复水对豌豆根系内源激素含量的影响[J]. 中国生态农业学报, 2009, 17(2):297-301. [30] Ge L, Chen H, Jiang JF, et al.Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity[J]. Plant Physiology, 2004, 135:1502-1513. [31] Zhu ZX, Liu Y, Liu SJ, et al.A gain-of-function mutation in OSIAA11 affects lateral root development in rice[J]. Molecular Plant, 2012, 5(1):154-161. [32] Yamamoto Y, Kamiya N, Morinaka Y, et a1. Auxin biosynthesis by the YUCCA genes in rice[J]. Plant Physiol, 2007, 143:1362-1371. [33] Woo YM, Park HJ, Park JJ, et a1. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and all appropriate root to shoot ratio[J]. Plant Mol Biol, 2007, 65:125-136. [34] Zhang Q, Li J, Zhang W, et al.The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance[J]. Plant J, 2012, 72(5):805-816. [35] Chen D, Richardson T, Chai S, et al.Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat[J]. Plant Cell Physiol, 2016, 57(10):2076-2090. [36] Hao YJ, Wei W, Song QX, et al.Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant J, 2011, 68(2):302-313. [37] Uga Y, Sugimoto K, Ogawa S, et al.Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nat Genet, 2013, 45:1097-1102. [38] Guseman JM, Webb K, Srinivasan C, et al.DRO1 influences root system architecture in Arabidopsis and Prunus species[J]. Plant J, 2017, 89:1093-1105. [39] Aloni R, Langhans M, Aloni E, et al.Role of cytokinin in the regulation of root gravitropism[J]. Planta, 2004, 220:177-182. [40] Werner T, Motyka V, Laucou V, et al.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J]. Plant Cell, 2003, 15:2532-2550. [41] Riefler, M, Novak O, Strnad M, et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J]. The Plant Cell, 2006, 18:40-54. [42] Lohar DP, Schaff JE, Laskey JG, et al.Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses[J]. Plant J, 2004, 38(2):203-214. [43] 李欣欣, 廖红, 赵静. 吲哚乙酸、吲哚丁酸和萘乙酸对大豆幼根生长的影响[J]. 华南农业大学学报, 2014, 35(3):35-40. [44] Gao S, Fang J, Xu F, et al.CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation[J]. Plant Physiology, 2014, 165(3):1035-1046. [45] Pospíšilová H, Jiskrová E, Vojta P, et al.Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress[J]. Nature Biotechnology, 2016, 25(33):692-705. [46] Ramireddy E, Hosseini SA, Eggert K, et al.Root engineering in barley:Increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance[J]. Plant Physiol, 2018, doi:10. 1104/pp. 18. 00199. [47] 吴忠义, 张中保, 李向龙, 等. 通过促进根系生长发育来创制抗旱玉米新种质材料[C]. 武汉:第一届全国玉米生物学学术研讨会论文汇编, 2015. [48] Davière JM, Achard P.Gibberellin signaling in plants[J]. Development, 2013, 140(6):1147-1151. [49] Wang D, Pan Y, Zhao X, et al.Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice[J]. BMC Genomics, 2011, 12:149. [50] Negi S, Ivanchenko MG, Muday GK.Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana[J]. Plant Journal, 2008, 55(2):175-187. [51] 王金祥, 潘瑞炽. 乙烯利、ACC、AOA和AgNO对绿豆下胚轴插条不定根形成的作用[J]. 热带亚热带植物学报, 2004, 12(6):506-510. [52] 李少昆, 王崇桃. 乙烯利对玉米根系的影响[J]. 植物生理学通讯, 1990(5):26-28. [53] Pierik R, Sasidharan R, Voesenek LACJ.Growth control by ethylene:Adjusting phenotypes to the environment[J]. J Plant Growth Regul, 2007, 26:188-200. [54] Yang J, Zhang J, Liu K, et al.Involvement of polyamines in the drought resistance of rice[J]. Journal of Experimental Botany, 2007, 58(6):1545. [55] 陈坤明, 张承烈. 干旱期间小麦叶片多胺含量与作物抗旱性的关系[J]. 植物生理学报, 2000, 26(5):381-386. [56] 许振柱, 于振文, 亓新华, 等. 土壤干旱对冬小麦旗叶乙烯释放、多胺积累和细胞质膜的影响[J]. 植物生理学报, 1995, 21(3):295-301. [57] Jarvis BC, Shannon PRM, Yasmin S.Involvement of polyamines with adventitious root development in stem cuttings of mung bean[J]. Plant Cell Physiol, 1983, 24:677-683. [58] 佘丽山, 周小梅. 渗透胁迫下外源精胺对水稻幼苗多胺含量及抗旱性的影响[J]. 湖南农业科学, 2011, 17:33-35. [59] 檀建新, 史吉平, 李广敏, 等. 亚精胺对水分胁迫下玉米幼苗内源乙烯和多胺含量的影响[J]. 植物生理学通讯, 1995, 31(2):99-102. [60] Liu K, Fu H, Bei Q, et al.Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements[J]. Plant Physiology, 2000, 124(3):1315-1325. [61] 关军锋, 刘海龙, 李广敏. 水分胁迫下小麦根叶多胺含量及其氧化酶活性变化[J]. 植物生态学报, 2003(5):525-527. [62] 关军锋, 曹君霞, 及华, 等. 根施外源多胺抑制剂MGBG和D-ARG对小麦幼苗抗旱性的影响[J]. 华北农学报, 2007, 22(5):24-26. [63] Wei Z, Li J.Brassinosteroids regulate root growth, development, and symbiosis[J]. Mol Plant, 2016, 9(1):86-100. [64] Haubrick LL, Assmann SM.Brassinosteroids and plant function:some clues, more puzzles[J]. Plant Cell Environ, 2006, 29(3):446-457. [65] 赵雪松, 王倩, 闫青地, 等. 油菜素内酯对水稻根系发育的调控作用[J]. 中国细胞生物学学报, 2016, 38:1191-1198. [66] Farooq M, Basra SMA, Wahid A, et al.Improving the drought tolerance in rice(Oryza sativa L.)by exogenous application of salicylic acid[J]. Journal of Agronomy and Crop Science, 2009, 195:237-246. [67] Kadioglu A, Saruhan N, Sağlam A, et al.Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system[J]. Plant Growth Regul, 2011, 64:27-37. [68] 单长卷张飞扬. 水杨酸对干旱下新单29玉米幼苗根系抗氧化特性的影响[J]. 江苏农业科学, 2015, 43(2):102-104. [69] 李才生, 秦燕, 宗盼. 水杨酸对玉米幼苗根系生长及细胞膜透性的影响[J]. 广东农业科学, 2009, 10:32-34. [70] Azooz MM, Youssef MM.Evaluation of heat shock and salicylic acid treatments as inducers of drought stress tolerance in Hassawi wheat[J]. Amer J Plant Physiol, 2010, 5:56-70. [71] Loutfy N, El-Tayeb MA, Hassanen AM, et al.Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat(Triticum aestivum)[J]. J Plant Research, 2012, 125(1):173-184. [72] 李海航, 潘瑞炽. 茉莉酸甲酯对绿豆下胚轴插条生根的影响[J]. 华南师范大学学报:自然科学版, 1998, (1):88. [73] 杨进, 李晓. 二氢茉莉酸丙酯浸根处理对水稻移栽苗某些生理特性的影响[J]. 荆门职业技术学院学报, 2000, 15(6):29-31. [74] 王树才, Ichii M, TAKETA S, 等. 茉莉酸对水稻侧根发生的影响(英文)[J]. 植物学报:英文版, 2002, 44(4):502-504. [75] Xin ZY, Zhou X, Pilet E.Level changes of jasmonic, abscisic, and indole-1y1-acetic acids in Maize under desiccation stress[J]. Journal of Plant Physiology, 1997, 1:120-124. [76] Gomez-Roldan V, Fermas S, Philip BB, et a1. Strigolactone inhibition ofshoot branching[J]. Nature, 2008, 455(7210):189-194. [77] Umehara M, Hanada A, Yoshida S, et a1. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455:l95-200. [78] Kapulnik Y, Delaux PM, Resnick N, et al.Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis[J]. Planta, 2011, 233(1):209-216. [79] Ruyter-Spira C, Kohlen W, Charnikhova T, et al.Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis:another belowground role for strigolactones?[J]. Plant Physiology, 2011, 155(2):721-734. [80] Kohlen W, Charnikhova L, Lammers M, et a1. The tomato CAROTENOID CLEAvAGE DIOXYGENASE8(S1CCD8)regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis[J]. The New Phytologist, 2012, 196(2):535-547. [81] Rasmussen A, Mason MG, Cuyer CD, et a1. Strigolactones suppress adventitious rooting in Arabidopsis and pea[J]. Plant Physiology, 2012, 158(4):1976-1987. [82] Ha CV, Leyva-González MA, Osakabe Y, et al.Positive regulatory role of strigolactone in plant responses to drought and salt stress[J]. Proc Natl Acad Sci U S A, 2014, 111(2):851-856. [83] López-Ráez JA.How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?[J]Planta, 2016, 243(6):1375-1385. [84] Rowe JH, Topping JF, Liu J, et al.Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin[J]. New Phytol, 2016, 211, 225-239. [85] Haider I, Andreo-Jimenez B, Bruno M, et al.The interaction of strigolactones with abscisic acid during the drought response in rice[J]. Journal of Experimental Botany, 2018, 69(9):2403-2414. [86] Xu W, Jia L, Shi W, et al.Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress[J]. New Phytol, 2013, 197(1):139-150. [87] Spollen WG, Lenoble ME, Samuels TD, et al.Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production[J]. Plant Physiol, 2000, 122:967-976. [88] Ruiz-lozano JM, Aroca R, Zamarreño ÁM, et al. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato[J]. Plant Cell & Environment, 2016, 39(2):441-452. [89] Visentin I, Vitali M, Ferrero M, et al.Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato[J]. New Phytologist, 2016, 212(4):954-963. [90] Sánchez-Romera B, Ruiz-Lozano JM, Zamarreño ÁM, et al.Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought[J]. Mycorrhiza, 2016, 26(2):111-122. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[3] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[4] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[5] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[6] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[7] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[8] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[9] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[10] | WANG Qi, HU Zhe, FU Wei, LI Guang-zhe, HAO Lin. Regulation of Burkholderia sp. GD17 on the Drought Tolerance of Cucumber Seedlings [J]. Biotechnology Bulletin, 2023, 39(3): 163-175. |
[11] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[12] | YU Bo, QIN Xiao-hui, ZHAO Yang. Mechanisms of Plant Sensing Drought Signals [J]. Biotechnology Bulletin, 2023, 39(11): 6-17. |
[13] | XING Yuan, SONG Jian, LI Jun-yi, ZHENG Ting-ting, LIU Si-chen, QIAO Zhi-jun. Identification of AP Gene Family and Its Response Analysis to Abiotic Stress in Setaria italica [J]. Biotechnology Bulletin, 2023, 39(11): 238-251. |
[14] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[15] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||