Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (9): 97-103.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1099
Previous Articles Next Articles
WU Li-ting, SU Xue, LIN Jun-sheng
Received:
2017-12-21
Online:
2018-09-26
Published:
2018-10-10
WU Li-ting, SU Xue, LIN Jun-sheng. Research Advances on Aptamer-based Quartz Crystal Microbalance Sensors[J]. Biotechnology Bulletin, 2018, 34(9): 97-103.
[1] Hermann T, Patel DJ.Adaptive recognition by nucleic acid aptamers[J]. Science, 2000, 287(5454):820-825. [2] Huang R, Xi Z, He N.Applications of aptamers for chemistry analysis, medicine and food security[J]. Science China Chemistry, 2015, 58(7):1122-1130. [3] Song K, Lee S, Ban C.Aptamers and their biological applications[J]. Sensors, 2012, 12(12):612-631. [4] Jing M, Bowser MT.Methods for measuring aptamer-protein equilibria:a review[J]. Anal Chim Acta, 2011, 686(1-2):9-18. [5] Cheng CI, Chang Y, Chu Y.Biomolecular interactions and tools for their recognition:focus on the quartz crystal microbalance and its diverse surface chemistries and applications[J]. Chem Soc Rev, 2012, 41(5):1947-1971. [6] Zhao M, Fan G, Chen J, et al.Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect[J]. Anal Chem, 2015, 24:12340-12347. [7] Politi J, Rea I, Nici F, et al.Nanogravimetric and optical characterizations of thrombin interaction with a self-assembled thiolated aptamer[J]. Journal of Sensors, 2016, 2016:1-8. [8] Shan W, Pan Y, Fang H, et al.An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label[J]. Talanta, 2014, 126:130-135. [9] Ozalp VC, Bayramoglu G, Erdem Z, et al.Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core-shell type magnetic separation[J]. Anal Chim Acta, 2015, 853:533-540. [10] Xu L, Wang R, Kelso LC, et al.A target-responsive and size-dependent hydrogel aptasensor embedded with QD fluorescent reporters for rapid detection of avian influenza virus H5N1[J]. Sensors and Actuators B:Chemical, 2016, 234:98-108. [11] MacKay S, Wishart D, Xing JZ, et al. Developing trends in aptamer-based biosensor devices and their applications[J]. IEEE Trans Biomed Circuits Syst, 2014, 8(1):4-14. [12] Hansen JA, Wang J, Kawde A, et al.Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor[J]. J Am Chem Soc, 2006, 128(7):2228-2229. [13] Lu Y, Zhu N, Yu P, Mao L.Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers[J]. Analyst, 2008, 133(9):1256-1260. [14] Kang Y, Feng KJ, Chen JW, et al.Electrochemical detection of thrombin by sandwich approach using antibody and aptamer[J]. Bioelectrochemistry, 2008, 73(1):76-81. [15] Arroyo-Currás N, Scida K, Ploense KL, et al.High surface area electrodes generated via electrochemical roughening improve the signaling of electrochemical aptamer-based biosensors[J]. Anal Chem, 2017, 89(22):12185-12191. [16] Abi A, Mohammadpour Z, Zuo X, et al.Nucleic acid-based electrochemical nanobiosensors[J]. Biosens Bioelectron, 2018, 102:479-489. [17] Ikebukuro K, Kiyohara C, Sode K.Novel electrochemical sensor system for protein using the aptamers in sandwich manner[J]. Biosens Bioelectron, 2005, 20(10):2168-2172. [18] 肖丽娟, 孙娟, 柴雅琴. 基于壳聚糖/碳纳米管/石墨烯/铁氰化镍纳米复合材料构建的电化学适体传感器用于凝血酶的检测[J]. 化学传感器, 2014(3):53-57. [19] Lv Y, Zhang Z, Chen F.Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents[J]. Talanta, 2003, 59(3):571-576. [20] Marquette CA, Blum LJ.Regenerable immunobiosensor for the chemiluminescent flow injection analysis of the herbicide 2, 4-D [J]. Talanta, 2000, 51(2):395-401. [21] Zhao L, Li B, Zhang Z, et al.Chemiluminescent flow-through sensor for automated dissolution testing of analgin tablets using manganese dioxide as oxidate[J]. Sensors and Actuators, 2004, 97(2/3):266-271. [22] 严喜鸾, 陈馨, 肖义陂, 等. 基于适体生物传感器的碱性磷酸酯酶化学发光检测腺苷[J]. 分析测试学报, 2017(4):565-569. [23] Lee M, Walt DR.A fiber-optic microarray biosensor using aptamers as receptors[J]. Anal Biochem, 2000, 282(1):142-146. [24] Plomer M, Guilbault GG, Hock B.Development of a piezoelectric immunosensor for the detection of enterobacteria[J]. Enzyme Microb Technol, 1992, 14(3):230-235. [25] Sun H, Zhang YY, Si SH, et al.Piezoelectric quartz crystal(PQC)with photochemically deposited nano-sized Ag particles for determining cyanide at trace levels in water[J]. Sensors and Actuators B:Chemical, 2005, 108(1-2):925-932. [26] Bunroddith K, Viseshakul N, Chansiri K, et al.QCM-based rapid detection of PCR amplification products of Ehrlichia canis[J]. Anal Chim Acta, 2018, 1001:106-111. [27] Abadian PN, Buch P, Goluch ED, et al.Real-time monitoring of urinary encrustation using a quartz crystal microbalance[J]. Anal Chem, 2018. doi:10. 1021/acs. analchem. [28] Song S, Wang L, Li J, et al.Aptamer-based biosensors[J]. TrAC Trends in Anal Chem, 2008, 27(2):108-117. [29] Sauerbrey G.The use of quartz oscillators for weighing layers and for micro-weighing[J]. Z Physik, 1959, 155-206. [30] Groff K, Brown J, Clippinger AJ.Modern affinity reagents:Recombinant antibodies and aptamers[J]. Biotechnology Advances, 2015, 33(8):1787-1798. [31] Osypova A, Thakar D, Dejeu J, et al.Sensor based on aptamer folding to detect low-molecular weight analytes[J]. Anal Chem, 2015, 87(15):7566-7574. [32] Özalp VC.Acoustic quantification of ATP using a quartz crystal microbalance with dissipation[J]. Analyst, 2011, 136(23):5046-5050. [33] Dong ZM, Zhao GC.A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal[J]. Analyst, 2013, 138(8):2456-2462. [34] Yao C, Qi Y, Zhao Y, et al.Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE[J]. Biosens Bioelectron, 2009, 24(8):2499-2503. [35] Chen Q, Tang W, Wang D, et al.Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles[J]. Biosens Bioelectron, 2010, 26(2):575-579. [36] Sun W, Song W, Guo X, et al.Ultrasensitive detection of nucleic acids and proteins using quartz crystal microbalance and surface plasmon resonance sensors based on target-triggering multiple signal amplification strategy[J]. Anal Chim Acta, 2017, 978:42-47. [37] Wu C, Du L, Zou L, et al.A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers[J]. Analyst, 2013, 20:5989-5994. [38] Du L, Wu C, Peng H, et al.Piezoelectric olfactory receptor biosensor prepared by aptamer-assisted immobilization[J]. Sensors and Actuators B:Chemical, 2013, 187:481-487. [39] Pan Y, Guo M, Nie Z, et al.Selective collection and detection of leukemia cells on a magnet-quartz crystal microbalance system using aptamer-conjugated magnetic beads[J]. Biosens Bioelectron, 2010, 25(7):1609-1614. [40] Wang L, Wang R, Chen F, et al.QCM-based aptamer selection and detection of Salmonella typhimurium[J]. Food Chem, 2017, 221:776-782. [41] Yu X, Chen F, Wang R, et al.Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157:H7 using a QCM sensor[J]. J Biotechnol, 2018, 266:39-49. [42] Brockman L, Wang R, Lum J, et al.QCM Aptasensor for rapid and specific detection of avian influenza virus[J]. Open Journal of Applied Biosensor, 2013, 02(04):97-103. [43] 冯阳阳, 李杜娟, 叶尊忠, 等. 纳米颗粒在石英晶体微天平生物传感器中的应用与研究进展[J]. 中国生物医学工程学报, 2011(02):299-307. [44] Dong Z, Zhao G.Quartz crystal microbalance aptasensor for sensitive detection of mercury(ii)based on signal amplification with gold nanoparticles[J]. Sensors, 2012, 6:7080-7094. [45] Chen Q, Wu X, Wang D, et al.Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury(II)ions with high sensitivity and tunable dynamic range[J]. The Analyst, 2011, 136(12):2572. [46] Sheng Z, Han J, Zhang J, et al.Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance[J]. Colloids and Surfaces B:Biointerfaces, 2011, 87(2):289-292. [47] Zheng B, Cheng S, Liu W, et al.Small organic molecules detection based on aptamer-modified gold nanoparticles-enhanced quartz crystal microbalance with dissipation biosensor[J]. Anal Biochem, 2013, 438(2):144-149. [48] Song W, Zhu Z, Mao Y, et al.A sensitive quartz crystal microbalance assay of adenosine triphosphate via DNAzyme-activated and aptamer-based target-triggering circular amplification[J]. Biosens Bioelectron, 2014, 53:288-294. [49] Hianik T, Ostatná V, Sonlajtnerova M, et al.Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin[J]. Bioelectrochemistry, 2007, 70(1):127-133. [50] Nübel C, Appel B, Hospach I, et al.Challenges and opportunities in the development of aptamers for TNFα[J]. Appl Biochem Biotechnol, 2016, 179(3):398-414. [51] He P, Liu L, Qiao W, et al.Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement[J]. Chem Commun(Camb), 2014, 50(12):1481-1484. [52] Wang R, Li Y.Hydrogel based QCM aptasensor for detection of avian influenzavirus[J]. Biosens Bioelectron, 2013, 42:148-155. [53] Xu L, Wang R, Kelso LC, et al.A target-responsive and size-dependent hydrogel aptasensor embedded with QD fluorescent reporters for rapid detection of avian influenza virus H5N1[J]. Sensors and Actuators B:Chemical, 2016, 234:98-108. [54] 苏雪, 何逸婷, 林俊生. 适体和蛋白质解离常数检测方法比较分析[J]. 传感器与微系统, 2016(11):47-50. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[3] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[4] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[5] | ZHOU Xi-wen, CHENG Ke, ZHU Hong-liang. Research Progress in the Approaches to in vivo RNA Secondary Structure Profiling in Plants [J]. Biotechnology Bulletin, 2023, 39(2): 51-62. |
[6] | GUO Wen-bo, LU Yang, SUI Li, ZHAO Yu, ZOU Xiao-wei, ZHANG Zheng-kun, LI Qi-yun. Preparation and Application of Polyclonal Antibodies Against Beauveria bassiana Mycovirus BbPmV-4 Coat Protein [J]. Biotechnology Bulletin, 2023, 39(10): 58-67. |
[7] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[8] | LI Hui-jie, DONG Lian-hua, CHEN Gui-fang, LIU Si-yuan, YANG Jia-yi, YANG Jing-ya. Establishment of Droplet Digital PCR Assay for Quantitative Detection of Pseudomonas cocovenenans in Foods [J]. Biotechnology Bulletin, 2023, 39(1): 127-136. |
[9] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[10] | HU Hai-yang, YING Wan-qin, HE Jun, LV Zhi-xian, XIE Xiao-ping, DENG Zhong-liang. Establishment and Application of ERA Real-time Fluorescence Method for Rapid Detection of Mycoplasma pneumoniae [J]. Biotechnology Bulletin, 2022, 38(9): 264-270. |
[11] | GAO Wei-xin, HUANG Huo-qing, ZHAO Jing, ZHANG Xin, YANG Ning, YANG Hao-meng. Construction and Activity Verification of Ribonucleoprotein Complex for Gene Editing [J]. Biotechnology Bulletin, 2022, 38(8): 60-68. |
[12] | ZHOU Zi-qi, ZHANG Yang-zi, LAN Xin-yue, LIU Yang-er, ZHU Long-jiao, XU Wen-tao. Selection and Application of Light-up Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2022, 38(5): 240-247. |
[13] | LAN Xin-yue, LIU Ning-ning, ZHU Long-jiao, CHEN Xu, CHU Hua-shuo, LI Xiang-yang, DUAN Nuo, XU Wen-tao. Tetracycline Bivalent Aptamer Non-enzyme Label-free Sensor [J]. Biotechnology Bulletin, 2022, 38(3): 276-284. |
[14] | LUO Xue-cong, AN Meng-nan, WU Yuan-hua, XIA Zi-hao. Applications of Recombinase Polymerase Amplification in Plant Virus Detection [J]. Biotechnology Bulletin, 2022, 38(2): 269-280. |
[15] | LIU Ning-ning, WANG Xin-xin, LAN Xin-yue, CHU Hua-shuo, CHEN Xu, CHANG Shi-min, LI Teng-fei, XU Wen-tao. G-Triplex Visualization Nucleic Acid Sensor for the Detection of Tetracycline [J]. Biotechnology Bulletin, 2022, 38(10): 106-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||