Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (9): 116-128.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0429
Previous Articles Next Articles
FENG Yu-xiang1, LI Xiang-yang2, SHAO Xiang-li1, XU Wen-tao1
Received:
2018-05-10
Online:
2018-09-26
Published:
2018-10-10
FENG Yu-xiang, LI Xiang-yang, SHAO Xiang-li, XU Wen-tao. The Development of Sensors for the Detection of Hg2+[J]. Biotechnology Bulletin, 2018, 34(9): 116-128.
[1] 王明华, 赵二劳, 李杜娟. 检测重金属离子生物传感器的研究进展[J]. 生物技术通报, 2013(10):46-51. [2] 李蕊, 周琦. 重金属污染与检测方法探讨[J]. 广东化工, 2007, 34(3):78-80. [3] Liu J, Lu Y.Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity[J]. Angew Chem, 2007, 119(40):7731-7734. [4] 冯新斌, 洪业汤. 汞的环境地球化学研究进展[J]. 地质地球化学, 1997(4):105-108. [5] 李艳艳, 熊光仲. 汞中毒的毒性机制及临床研究进展[J]. 中国急救复苏与灾害医学杂志, 2008(1):57-59. [6] Xie J, Zheng Y, Ying JY.Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of au nanoclusters by Hg2+-Au+ interactions[J]. Chem Commun, 2010, 46(6):961-963. [7] Bendl RF, Madden JT, Regan AL, et al.Mercury determination by cold vapor atomic absorption spectrometry utilizing uv photoreduction[J]. Talanta, 2006, 68(4):1366-1370. [8] Zhang Y, Adeloju SB.Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry[J]. Anal Chim Acta, 2012, 721:22-27. [9] Han FX, Patterson WD, Xia Y, et al.Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study[J]. Water Air Soil Pollut, 2006, 170(1-4):161-171. [10] Zheng C, Li Y, He Y, et al.Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury:Potential application to mercury speciation in water[J]. Journal of Analytical Atomic Spectrometry, 2005, 20(8):746-750. [11] Chen P, Wu P, Chen J, et al.Label-free and separation-free atomic fluorescence spectrometry-based bioassay:Sensitive determination of single-strand DNA, protein, and double-strand DNA[J]. Anal Chem, 2016, 88(4):2065-2071. [12] Moreno F, Garcia-Barrera T, Gomez-Ariza J.Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by hplc column-switching coupled to icp-ms[J]. Analyst, 2010, 135(10):2700-2705. [13] Wang P, Liu QJ.Biomedical sensors and measurement[M]. Hangzhou:Zhejiang University Press, 2011. [14] Zhang X, Xiao Y, Qian XA.Ratiometric fluorescent probe based on fret for imaging Hg2+ ions in living cells[J]. Angew Chem Int Ed Engl, 2008, 47(42):8025-8029. [15] Lin YH, Tseng WL.Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters[J]. Anal Chem, 2010, 82(22):9194-9200. [16] Hu D, Sheng Z, Gong P, et al.Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters[J]. Analyst, 2010, 135(6):1411-1416. [17] Guo Z, Park S, Yoon J, et al.Recent progress in the development of near-infrared fluorescent probes for bioimaging applications[J]. Chem Soc Rev, 2014, 43(1):16-29. [18] Chen X, Nam SW, Jou MJ, et al.Hg2+ selective fluorescent and colorimetric sensor:Its crystal structure and application to bioimaging[J]. Org Lett, 2008, 10(22):5235-5238. [19] Wu JS, Hwang IC, Kim KS, et al.Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution:Fluorescent off- on[J]. Org Lett, 2007, 9(5):907-910. [20] Lin W, Cao X, Ding Y, et al.A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine-thioamide-alkyne scaffold[J]. Chem Commun, 2010, 46(20):3529-3531. [21] Ros-Lis JV, Martínez-Máñez R, Rurack K, et al.Highly selective chromogenic signaling of Hg2+ in aqueous media at nanomolar levels employing a squaraine-based reporter[J]. Inorg Chem, 2004, 43(17):5183-5185. [22] Arunkumar E, Ajayaghosh A, Daub J.Selective calcium ion sensing with a bichromophoric squaraine foldamer[J]. J Am Chem Soc, 2005, 127(9):3156-3164. [23] Ros-Lis JV, Marcos MD, Mártinez-Máñez R, et al.A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions[J]. Angew Chem Int Ed Engl, 2005, 44(28):4405-4407. [24] Chen C, Wang R, Guo L, et al.A squaraine-based colorimetric and “turn on” fluorescent sensor for selective detection of Hg2+ in an aqueous medium[J]. Org Lett, 2011, 13(5):1162-1165. [25] 谢振达, 付曼琳, 尹彪, 等. 1, 8-萘酰亚胺类荧光探针在双光子成像中应用的研究进展[J]. 有机化学, 2018(6):1364-1376. [26] Guo X, Qian X, Jia L.A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution[J]. J Am Chem Soc, 2004, 126(8):2272-2273. [27] Li CY, Zhang XB, Qiao L, et al.Naphthalimide- porphyrin hybrid based ratiometric bioimaging probe for Hg2+:Well-resolved emission spectra and unique specificity[J]. Anal Chem, 2009, 81(24):9993-10001. [28] Reardan DT, Meares CF, Goodwin DA, et al.Antibodies against metal chelates[J]. Nature, 1985, 316(6025):265. [29] Chen P, He C.A general strategy to convert the merr family proteins into highly sensitive and selective fluorescent biosensors for metal ions[J]. J Am Chem Soc, 2004, 126(3):728-729. [30] Wegner SV, Okesli A, Chen P, et al.Design of an emission ratiometric biosensor from merr family proteins:A sensitive and selective sensor for Hg2+[J]. J Am Chem Soc, 2007, 129(12):3474-3475. [31] Frasco MF, Colletier JP, Weik M, et al.Mechanisms of cholinesterase inhibition by inorganic mercury[J]. FEBS J, 2007, 274(7):1849-1861. [32] Katz S.The reversible reaction of sodium thymonucleate and mercuric chloride[J]. J Am Chem Soc, 1952, 74(9):2238-2245. [33] Katz S.The reversible reaction of Hg(Ⅱ)and double-stranded polynucleotides a step-function theory and its significance[J]. Biochim Biophys Acta, 1963, 68:240-253. [34] Miyake Y, Togashi H, Tashiro M, et al.MercuryⅡ-mediated formation of thymine- HgⅡ- thymine base pairs in DNA duplexes[J]. J Am Chem Soc, 2006, 128(7):2172-2173. [35] Tanaka Y, Oda S, Yamaguchi H, et al.15n-15n j-coupling across HgⅡ:Direct observation of HgⅡ-mediated t- t base pairs in a DNA duplex[J]. J Am Chem Soc, 2007, 129(2):244-245. [36] Kondo J, Yamada T, Hirose C, et al.Crystal structure of metallo DNA duplex containing consecutive watson-crick-like T-Hg(Ⅱ)-T base pairs[J]. Angew Chem, 2014, 126(9):2417-2420. [37] Torigoe H, Ono A, Kozasa T.Hg(Ⅱ)ion specifically binds with t:T mismatched base pair in duplex DNA[J]. Chemistry, 2010, 16(44):13218-13225. [38] Lin YW, Ho HT, Huang CC, et al.Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon[J]. Nucleic Acids Res, 2008, 36(19):e123. [39] Ono A, Togashi H.Highly selective oligonucleotide-based sensor for mercury(Ⅱ)in aqueous solutions[J]. Angew Chem Int Ed Engl, 2004, 43(33):4300-4302. [40] Lee CY, Kim HY, Ahn JK, et al.Rapid and label-free strategy for the sensitive detection of Hg2+ based on target-triggered exponential strand displacement amplification[J]. RSC Advances, 2017, 7(74):47143-47147. [41] Chansuvarn W, Tuntulani T, Imyim A.Colorimetric detection of mercury(ii)based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials[J]. TrAC Trends in Anal Chem, 2015, 65:83-96. [42] Yu T, Zhang TT, Zhao W, et al.A colorimetric/fluorescent dual-mode sensor for ultra-sensitive detection of Hg2+[J]. Talanta, 2017, 165:570-576. [43] Wang Y, Li YF, Wang J, et al.End-to-end assembly of gold nanorods by means of oligonucleotide-mercury(ii)molecular recognition[J]. Chem Commun, 2010, 46(8):1332-1334. [44] Ma W, Sun M, Xu L, et al.A sers active gold nanostar dimer for mercury ion detection[J]. Chem Commun, 2013, 49(44):4989-4991. [45] Qiu Z, Shu J, Jin G, et al.Invertase-labeling gold-dendrimer for in situ amplified detection mercury(ii)with glucometer readout and thymine-Hg2+-thymine coordination chemistry[J]. Biosens Bioelectron, 2016, 77:681-686. [46] Xiong E, Wu L, Zhou J, et al.A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure[J]. Anal Chim Acta, 2015, 853:242-248. [47] Xie H, Wang Q, Chai Y, et al.Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg2+[J]. Biosens Bioelectron, 2016, 86:630-635. [48] Amiri S, Navaee A, Salimi A, et al.Zeptomolar detection of Hg2+ based on label-free electrochemical aptasensor:One step closer to the dream of single atom detection[J]. Electrochemistry Communications, 2017, 78:21-25. [49] Cech TR, Zaug AJ, Grabowski PJ.In vitro splicing of the ribosomal rna precursor of tetrahymena:Involvement of a guanosine nucleotide in the excision of the intervening sequence[J]. Cell, 1981, 27(3):487-496. [50] 周耕民, 刁勇, 李三暑. 核酶的发现及其在基因治疗中的应用[J]. 华侨大学学报:自然科学版, 2017, 38(4):509-514. [51] Palchetti I, Mascini M.Nucleic acid biosensors for environmental pollution monitoring[J]. Analyst, 2008, 133(7):846-854. [52] Breaker RR, Joyce GF.A DNA enzyme that cleaves rna[J]. Chemistry & Biology, 1994, 1(4):223-229. [53] Schlosser K, Li Y.A versatile endoribonuclease mimic made of DNA:Characteristics and applications of the 8-17 rna-cleaving dnazyme[J]. Chem Bio Chem, 2010, 11(7):866-879. [54] Carmi N, Balkhi SR, Breaker RR.Cleaving DNA with DNA[J]. Proc Natl Acad Sci, 1998, 95(5):2233-2237. [55] Liu J, Lu Y.Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor[J]. Anal Chem, 2004, 76(6):1627-1632. [56] 郭亚辉, 姚卫蓉, 裴仁军, 等. G 四链体在生物传感器中的应用[J]. 武汉大学学报:理学版, 2017(1):9-21. [57] Li T, Dong S, Wang E.Label-free colorimetric detection of aqueous mercury ion(Hg2+)using Hg2+-modulated g-quadruplex-based DNAzymes[J]. Anal Chem, 2009, 81(6):2144-2149. [58] Vannela R, Adriaens P.In vitro selection of Hg(II)and as(v)-dependent rna-cleaving dnazymes[J]. Environmental Engineering Science, 2007, 24(1):73-84. [59] Hollenstein M, Hipolito C, Lam C, et al.A highly selective dnazyme sensor for mercuric ions[J]. Angew Chem Int Ed Engl, 2008, 47(23):4346-4350. [60] Huang PJ, van Ballegooie C, Liu J. Hg2+ detection using a phosphorothioate rna probe adsorbed on graphene oxide and a comparison with thymine-rich DNA[J]. Analyst, 2016, 141(12):3788-3793. [61] Huang PJ, Liu J.Sensing parts-per-trillion Cd2+, Hg2+, and Pb2+ collectively and individually using phosphorothioate dnazymes[J]. Anal Chem, 2014, 86(12):5999-6005. [62] Tang B, Ding B, Xu K, et al.Use of selenium to detect mercury in water and cells:An enhancement of the sensitivity and specificity of a seleno fluorescent probe[J]. Chemistry, 2009, 15(13):3147-3151. [63] Santra M, Ryu D, Chatterjee A, et al.A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species[J]. Chem Commun, 2009, (16):2115-2117. [64] Virta M, Lampinen J, Karp M.A luminescence-based mercury biosensor[J]. Anal Chem, 1995, 67(3):667-669. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | ZHANG Xue-ping, LU Yu-qing, ZHANG Yue-qian, LI Xiao-juan. Advances in Plant Extracellular Vesicles and Analysis Techniques [J]. Biotechnology Bulletin, 2023, 39(5): 32-43. |
[4] | ZHOU Xi-wen, CHENG Ke, ZHU Hong-liang. Research Progress in the Approaches to in vivo RNA Secondary Structure Profiling in Plants [J]. Biotechnology Bulletin, 2023, 39(2): 51-62. |
[5] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[6] | ZHANG Hong-hong, FANG Xiao-feng. Advances in the Regulation of Stress Sensing and Responses by Phase Separation in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 44-53. |
[7] | GUO Wen-bo, LU Yang, SUI Li, ZHAO Yu, ZOU Xiao-wei, ZHANG Zheng-kun, LI Qi-yun. Preparation and Application of Polyclonal Antibodies Against Beauveria bassiana Mycovirus BbPmV-4 Coat Protein [J]. Biotechnology Bulletin, 2023, 39(10): 58-67. |
[8] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[9] | LI Hui-jie, DONG Lian-hua, CHEN Gui-fang, LIU Si-yuan, YANG Jia-yi, YANG Jing-ya. Establishment of Droplet Digital PCR Assay for Quantitative Detection of Pseudomonas cocovenenans in Foods [J]. Biotechnology Bulletin, 2023, 39(1): 127-136. |
[10] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[11] | HU Hai-yang, YING Wan-qin, HE Jun, LV Zhi-xian, XIE Xiao-ping, DENG Zhong-liang. Establishment and Application of ERA Real-time Fluorescence Method for Rapid Detection of Mycoplasma pneumoniae [J]. Biotechnology Bulletin, 2022, 38(9): 264-270. |
[12] | GAO Wei-xin, HUANG Huo-qing, ZHAO Jing, ZHANG Xin, YANG Ning, YANG Hao-meng. Construction and Activity Verification of Ribonucleoprotein Complex for Gene Editing [J]. Biotechnology Bulletin, 2022, 38(8): 60-68. |
[13] | LAN Xin-yue, LIU Ning-ning, ZHU Long-jiao, CHEN Xu, CHU Hua-shuo, LI Xiang-yang, DUAN Nuo, XU Wen-tao. Tetracycline Bivalent Aptamer Non-enzyme Label-free Sensor [J]. Biotechnology Bulletin, 2022, 38(3): 276-284. |
[14] | LUO Xue-cong, AN Meng-nan, WU Yuan-hua, XIA Zi-hao. Applications of Recombinase Polymerase Amplification in Plant Virus Detection [J]. Biotechnology Bulletin, 2022, 38(2): 269-280. |
[15] | KONG De-zhen, NIE Ying-bin, XU Hong-jun, CUI Feng-juan, MU Pei-yuan, TIAN Xiao-ming. Effects of Blend Seeding on the Yield,Purity and Yield Advantage of F1 in Three-line Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(10): 132-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||