Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (9): 129-138.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0055
Previous Articles Next Articles
LI Shu-ting1, HE Wan-chong1, XU Wen-tao1,2
Received:
2018-01-15
Online:
2018-09-26
Published:
2018-10-10
LI Shu-ting, HE Wan-chong, XU Wen-tao. Research Progress on Metal-organic Framework-mediated Functional Nucleic Acid Detection Technology[J]. Biotechnology Bulletin, 2018, 34(9): 129-138.
[1] Chen L, Zheng H, Zhu X, et al.Metal-organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA[J]. Analyst, 2013, 138(12):3490-3493. [2] Wang HS.Metal-organic frameworks for biosensing and bioimaging applications[J]. Coordination Chemistry Reviews, 2017, 349:139-155. [3] Yang B, Shen M, Liu J, et al.Post-synthetic modification nanoscale metal-organic frameworks for targeted drug delivery in cancer cells[J]. Pharmaceutical research, 2017, 34(11):2440-2450. [4] 谷娜, 李恒, 赵远. 金属有机骨架材料固定生物大分子的研究进展[J]. 中国材料进展, 2017, 36(11):833-838. [5] Wei X, Zheng L, Luo F, et al.Fluorescence biosensor for the H5N1 antibody based on a metal-organic framework platform[J]. Journal of Materials Chemistry B, 2013, 1(13):1812-1817. [6] Lei J, Qian R, Ling P, et al.Design and sensing applications of metal-organic framework composites[J]. TrAC Trends in Anal Chem, 2014, 58:71-78. [7] Han Q, Zhang L, et al.Metal-organic frameworks with phosphotung-state incorporated for hydrolytic cleavage of a DNA-model phosphodiester[J]. Inorg Chem, 2012, 51(9):5118-5127. [8] Guo JF, Li CM, Hu XL, et al.Metal-organic framework MIL-101 enhanced fluorescence anisotropy for sensitive detection of DNA[J]. RSC Advances, 2014, 4(18):9379-9382. [9] Zhan S, Wu Y, Wang L, et al.A mini-review on functional nucleic acids-based heavy metal ion detection[J]. Biosensors & Bioelectronics, 2016, 86:353-368. [10] Liu J, Cao Z, Lu Y.Functional nucleic acid sensors[J]. Chem Rev, 2009, 109(5):1948-98. [11] Abi A, Mohammadpour Z, Zuo X, et al.Nucleic Acid-Based Electrochemical Nanobiosensors[J]. Biosensors & Bioelectronics, 2017, 102:479. [12] Chen WH, Yu X, Cecconello A, et al.Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH-and metal-ion-dependent DNAzymes as locks[J]. Chem Sci, 2017, 8(8):5769-5780. [13] Ye T, Liu Y, Luo M, et al.Metal-organic framework-based molecular beacons for multiplexed DNA detection by synchronous fluorescence analysis[J]. Analyst, 2014, 139(7):1721-1725. [14] Zhao HQ, Qiu GH, Liang Z, et al.A zinc(II)-based two-dimensional MOF for sensitive and selective sensing of HIV-1 ds-DNA sequences[J]. Anal Chim Acta, 2016, 922:55-63. [15] Wang HS, Liu HL, Wang K, et al.Insight into the unique fluorescence quenching property of metal-organic frameworks upon DNA binding[J]. Anal Chem, 2017, 89(21):11366-11371. [16] Mejia-Ariza R, Rosselli J, Breukers C, et al.DNA detection by flow cytometry using PNA-modified metal-organic framework particles[J]. Chemistry, 2017, 23(17):4180-4186. [17] Zhang F, et al.Two metal-organic frameworks based on a flexible benzimidazole carboxylic acid ligand:selective gas sorption and luminescence[J]. Dalton Trans, 2017, 46(43):15118-15123. [18] Ranocchiari M, van Bokhoven JA. Catalysis by metal-organic frameworks:fundamentals and opportunities[J]. Physical Chemistry Chemical Physics, 2011, 13(14):6388-6396. [19] Colombo V, Galli S, Choi HJ, et al.High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites[J]. Chem Sci, 2011, 2(7):1311-1319. [20] Morris W, Briley WE, Auyeung E, et al.Nucleic acid-metal organic framework(MOF)nanoparticle conjugates[J]. J Am Chem Soc, 2014, 136(20):7261-7264. [21] Mondal B, Sen B, Zangrando E, et al.A dysprosium-based metal-organic framework:Synthesis, characterization, crystal structure and interaction with calf thymus-DNA and bovine serum albumin[J]. J Chem Sci, 2014, 126(4):1115-1124. [22] Giménez-Marqués M, Hidalgo T, Serre C, et al.Nanostructured metal-organic frameworks and their bio-related applications[J]. Coordination Chemistry Reviews, 2016, 307:342-360. [23] Wang W, Wang L, Liu S, et al.Metal-organic frameworks@polymer composites containing cyanines for near-infrared fluorescence imaging and photothermal tumor therapy[J]. Bioconjugate Chemistry, 2017, 28(11):2784-2793. [24] Xiao YF, Wang TT, Zeng H.Synthesis, crystal structure and optical property of two zinc metal organic frameworks constructed from isonicotinic acid[J]. Journal of Molecular Structure, 2014, 1074:330-338. [25] Chowdhuri AR, Laha D, Chandra S, et al.Synthesis of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells[J]. Chemical Engineering Journal, 2017, 319:200-211. [26] Foucault-Collet A, Gogick KA, et al.Lanthanide near infrared ima-ging in living cells with Yb3+ nano metal organic frameworks[J]. Proc Natl Acad Sci, 2013, 110(43):17199-17204. [27] Cai W, et al.Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy[J]. ACS Appl Mater Interfaces, 2017, 9(3):2040-2051. [28] Ryu UJ, Yoo J, Kwon W, et al.Tailoring nanocrystalline metal-organic frameworks as fluorescent dye carriers for bioimaging[J]. Inorg Chem, 2017, 56(21):12859-12865. [29] Qin L, Sun ZY, Cheng K, et al.Zwitterionic manganese and gadolinium metal-organic frameworks as efficient contrast agents for in vivo magnetic resonance imaging[J]. ACS Appl Mater Interfaces, 2017, 9(47):41378-41386. [30] Li C, Qiu W, Long W, et al.Synthesis of porphyrin@MOFs type catalysts through “one-pot” self-assembly[J]. Journal of Molecular Catalysis A:Chemical, 2014, 393:166-170. [31] Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R, et al.Synthesis and application of a novel magnetic metal-organic framework nanocom- posite for determination of Cd, Pb,Zn in baby food samples[J]. Canadian Journal of Chemistry, 2014, 93(5):518-525. [32] He C, Lu K, Liu D, et al.Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells[J]. J Am Chem Soc, 2014, 136(14):5181-5184. [33] Zhu X, Zheng H, Wei X, et al.Metal-organic framework(MOF):a novel sensing platform for biomolecules[J]. Chem Commun, 2013, 49(13):1276-1278. [34] Zhang HT, Zhang JW, Huang G, et al.An amine-functionalized metal-organic framework as a sensing platform for DNA detection[J]. Chem Commun, 2014, 50(81):12069-12072. [35] Song WJ.Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification[J]. Talanta, 2017, 170:74-80. [36] Tian J, Liu Q, Shi J, et al.Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods:Synergies of the metal center and organic linker[J]. Biosens Bioelectron, 2015, 71:1-6. [37] Fang JM, Gao PF, Hu XL, et al.A dual model logic gate for mercury and iodide ions sensing based on metal-organic framework MIL-101[J]. RSC Advances, 2014, 4(70):37349-37352. [38] Weng H, Yan B.A Eu(III)doped metal-organic framework conjugated with fluorescein-labeled single-stranded DNA for detection of Cu(II)and sulfide[J]. Anal Chim Acta, 2017, 988:89-95. [39] He J, Li G, Hu Y.Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform:Highly selective and sensitive determination of thrombin and oxytetracycline[J]. Microchimica Acta, 2017, 184(7):2365-2373. [40] Xie BP, Qiu GH, Hu PP, et al.Simultaneous detection of Dengue and Zika virus RNA sequences with a three-dimensional Cu-based zwitterionic metal-organic framework, comparison of single and synchronous fluorescence analysis[J]. Sensors and Actuators B:Chemical, 2018, 254:1133-1140. [41] Ling P, Lei J, Zhang L, et al.Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA[J]. Anal Chem, 2015, 87(7):3957-3963. [42] Ling P, Lei J, Ju H.Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch[J]. Biosens Bioelectron, 2015, 71:373-379. [43] Zhou X, Guo S, Gao J, et al.Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases[J]. Biosens Bioelectron, 2017, 98:83-90. [44] Yang X, Lv J, Yang Z, et al.A Sensitive electrochemical aptasensor for thrombin detection based on electroactive co-based metal-organic frameworks with target-triggering NESA strategy[J]. Anal Chem, 2017, 89(21):11636-11640. [45] Xu W, Zhou X, et al.Label-free and enzyme-free strategy for sensi- tive electrochemical lead aptasensor by using metal-organic frame- works loaded with AgPt nanoparticles as signal probes and electro-catalytic enhancers[J]. Electrochimica Acta, 2017, 251:25-31. [46] Shen WJ, Zhuo Y, Chai Y Q, et al.Ce-based metal-organic frameworks and DNAzyme-assisted recycling as dual signal amplifiers for sensitive electrochemical detection of lipopolysaccharide[J]. Biosens Bioelectron, 2016, 83:287-292. [47] Shen WJ, Zhuo Y, Chai YQ, et al.Cu-based metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection[J]. Anal Chem, 2015, 87(22):11345-11352. [48] Chen M, Gan N, Zhou Y, et al.A novel aptamer-metal ions-nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification[J]. Sensors and Actuators B:Chemical, 2017, 242:1201-1209. [49] Chen M, Gan N, et al.An electrochemical aptasensor for multiplex antibiotics detection using Y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy[J]. Anal Chim Acta, 2017, 968:30-39. [50] Zhang C, He J, Zhang Y, et al.Cerium dioxide-doped carboxyl fullerene as novel nanoprobe and catalyst in electrochemical biosensor for amperometric detection of the CYP2C19* 2 allele in human serum[J]. Biosens Bioelectron, 2018, 102:94-100. [51] Wang H, Jian Y, Kong Q, et al.Ultrasensitive electrochemical paper-based biosensor for microRNA via strand displacement reaction and metal-organic frameworks[J]. Sensors and Actuators B:Chemical, 2018, 257:561-569. [52] Liu YL, Fu WL, Li CM, et al.Gold nanoparticles immobilized on metal-organic frameworks with enhanced catalytic performance for DNA detection[J]. Anal Chim Acta, 2015, 861:55-61. [53] Xiong C, Liang W, Zheng Y, et al.Ultrasensitive assay for telomerase activity via self-enhanced electrochemiluminescent ruthenium complex doped metal-organic frameworks with high emission efficiency[J]. Anal Chem, 2017, 89(5):3222-3227. [54] Baati T, Njim L, Neffati F, et al.In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III)metal-organic frameworks[J]. Chem Sci, 2013, 4(4):1597-1607. [55] Tamames-Tabar C, Cunha D, Imbuluzqueta E, et al.Cytotoxicity of nanoscaled metal-organic frameworks[J]. Journal of Materials Chemistry B, 2014, 2(3):262-271. [56] Wu LL, Wang Z, Zhao SN, et al.A Metal-organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(ii)ion detection[J]. Chemistry, 2016, 22(2):477-480. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[3] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[4] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[5] | ZHOU Zi-qi, ZHANG Yang-zi, LAN Xin-yue, LIU Yang-er, ZHU Long-jiao, XU Wen-tao. Selection and Application of Light-up Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2022, 38(5): 240-247. |
[6] | LIU Ning-ning, WANG Xin-xin, LAN Xin-yue, CHU Hua-shuo, CHEN Xu, CHANG Shi-min, LI Teng-fei, XU Wen-tao. G-Triplex Visualization Nucleic Acid Sensor for the Detection of Tetracycline [J]. Biotechnology Bulletin, 2022, 38(10): 106-114. |
[7] | WANG Peng-fei, YANG Min, ZHU Long-jiao, XU Wen-tao. Advances in Biosensors Based on Platinum Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(12): 235-242. |
[8] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[9] | FANG Shun-yan, SONG Dan, LIU Yan-ping, XU Wen-juan, LIU Jia-yao, HAN Xiang-zhi, LONG Feng. Study on Evanescent Wave Fluorescence Aptasensor for Direct and Rapid Detection of Escherichia coli O157∶H7 [J]. Biotechnology Bulletin, 2020, 36(7): 228-234. |
[10] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[11] | YANG Min, LI Shu-ting, YANG Wen-ping, LI Xiang-yang, XU Wen-tao. Research Progress on Functional Nucleic Acid Biosensors Mediated by DNA/Silver Nanoclusters [J]. Biotechnology Bulletin, 2020, 36(6): 245-254. |
[12] | LIU Su-yue, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Terbium(III)and Its Complexes:from Luminescent Properties to Sensing and Bioimaging Applications [J]. Biotechnology Bulletin, 2020, 36(4): 192-207. |
[13] | SUN Yu-ge, LI Chen-wei, DU Zai-hui, XU Wen-tao. Research Progress on FEN1-mediated Functional Nucleic Acid Biosensors [J]. Biotechnology Bulletin, 2020, 36(4): 208-224. |
[14] | WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection [J]. Biotechnology Bulletin, 2020, 36(1): 193-201. |
[15] | XIAO Bing, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, XU Wen-tao. Research Progress in the Quantitative and Unitive Detecting Technologies Based on Functional Nucleic Acid and Labeled Fluorescence [J]. Biotechnology Bulletin, 2019, 35(7): 213-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||