Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (9): 170-176.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0252
Previous Articles Next Articles
ZHANG Zhi-min, ZHUANG Miao, JIN Feng-jie
Received:
2018-03-21
Online:
2018-09-26
Published:
2018-10-10
ZHANG Zhi-min, ZHUANG Miao, JIN Feng-jie. Advances in Gene Engineering Technologies for Aspergillus oryzae[J]. Biotechnology Bulletin, 2018, 34(9): 170-176.
[1] Abe K, Gomi K, Hasegawa F, et al.Impact of Aspergillus oryzae genomics on industrial production of metabolites[J]. Mycopathologia, 2006, 162(3):143. [2] Galagan JE, Calvo SE, Cuomo C, et al.Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae[J]. Nature, 2005, 438(7071):1105-1115. [3] 银超. 曲霉工业菌种基因组测序及比较基因组研究[D]. 广州:华南理工大学, 2014. [4] Uchima CA, Tokuda G, Watanabe H, et al.Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2011, 89(6):1761-1771. [5] Murphy RA, Power RFG.Expression of an α-galactosidase from Saccharomyces cerevisiae, in Aspergillus awamori, and Aspergillus oryzae[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 28(2):97. [6] Bartling S, vanden Hombergh JP, Olsen O, et al. Expression of an Erwinia pectate lyase in three species of Aspergillus[J]. Current Genetics, 1996, 29(5):474-481. [7] Vongsangnak W, Olsen P, Hansen K, et al.Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae[J]. Bmc Genomics, 2008, 9(1):245. [8] 张田, 唐克轩. 丝状真菌的遗传工程研究进展[J]. 上海交通大学学报:农业科学版, 2010, 28(5):480-486. [9] Mattern IE, Unkles S, Kinghorn JR, et al.Transformation of Aspergillus oryzae using the A. niger pyrG gene[J]. Molecular & General Genetics Mgg, 1987, 210(3):460-461. [10] Kitamoto N, Kimura T, Kito Y, et al.The nitrate reductase gene from a shoyu koji mold, Aspergillus oryzae KBN616[J]. Biosci Biotechnol Biochem, 1995, 59(9):1795-1797. [11] Yoon J, Maruyama J, Kitamoto K.Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins[J]. Appl Microbiol Biotechnol, 2011, 89(3):747. [12] Jin FJ, Maruyama JI, Juvvadi PR, et al.Development of a novel quadruple auxotrophic host transformation system by argB, gene disruption using adeA, gene and exploiting adenine auxotrophy in Aspergillus oryzae[J]. FEMS Microbiol Lett, 2004, 239(1):79-85. [13] Takahashi T, Masuda T, Koyama Y.Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae[J]. Mol Genet Genomics, 2006, 275(5):460-470. [14] Takahashi T, Jin FJ, Sunagawa M, et al.Generation of large chromosomal deletions in koji molds Aspergillus oryzae and Aspergillus sojae via a loop-out recombination[J]. Appl Environ Microbiol, 2008, 74(24):7684-7693. [15] Takahashi T, Jin FJ, Koyama Y.Nonhomologous end-joining deficiency allows large chromosomal deletions to be produced by replacement-type recombination in Aspergillus oryzae[J]. Fungal Genetics & Biology, 2009, 46(11):815-824. [16] Jin FJ, Takahashi T, Utsushikawa M, et al.A trial of minimization of chromosome 7 in Aspergillus oryzae by multiple chromosomal deletions[J]. Mol Genet Genom, 2010, 283(1):1-12. [17] Hara S, Jin FJ, Takahashi T, et al.A further study on chromosome minimization by protoplast fusion in Aspergillus oryzae[J]. Mol Genet Genomics, 2012, 287:177-187. [18] Jin FJ, Takahashi T, Machida M, et al.Identification of bHLH-type transcription regulator gene by systematically deleting large chromosomal segments in Aspergillus oryzae[J]. Appl. Environ Microbiol, 2009, 75:5943-5951. [19] Wada R, Jin FJ, Koyama Y, et al.Efficient formation of heterokaryotic sclerotia in the filamentous fungus Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2014, 98(1):325-334. [20] Fleiβner A, Dersch P.Expression and export:recombinant protein production systems for Aspergillus[J]. Appl Microbiol Biotechnol, 2010, 87(4):1255-1270. [21] Yoder WT, Lehmbeck J.Heterologous expression and protein secretion in filamentous fungi[M]. Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer US, 2004:201-219. [22] Jin FJ, Maruyama J, Juvvadi PR, et al.Adenine auxotrophic mutants of Aspergillus oryzae:development of a novel transformation system with triple auxotrophic hosts[J]. Biosci Biotechnol Biochem, 2004, 68:656-662. [23] Jin FJ, Watanabe T, Juvvadi PR, et al.Double disruption of the proteinase genes, tppA, and pepE, increases the production level of human lysozyme by Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2007, 76(5):1059-1068. [24] Yoon J, Kimura S, Maruyama J, et al.Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2009, 82(4):691-701. [25] Yoon J, Aishan T, Maruyama J, et al.Enhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzae via disruption of vacuolar protein sorting receptor gene Aovps10[J]. Appl Environ Microbiol, 2010, 76:5718-5727. [26] Nemoto T, Watanabe T, Mizogami Y, et al.Isolation of Aspergillus oryzae mutants for heterologous protein production from a double proteinase gene disruptant[J]. Appl Microbiol Biotechnol, 2009, 82(6):1105-1114. [27] Yaver DS, Lamsa M, Munds R, et al.Using DNA-tagged mutage-nesis to improve heterologous protein production in Aspergillus oryzae[J]. Fungal Genetics & Biology, 2000, 29(1):28. [28] Zhu L, Nemoto T, Yoon J, et al.Improved heterologous protein production by a tripeptidyl peptidase gene(AosedD)disruptant of the filamentous fungus Aspergillus oryzae[J]. Journal of General & Applied Microbiology, 2012, 58(3):199-209. [29] Zhu L, Maruyama J, Kitamoto K.Further enhanced production of heterologous proteins by double-gene disruption(ΔAosedD ΔAovps10)in a hyper-producing mutant of Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2013, 97(14):6347. [30] Ohno A, Maruyama J, Nemoto T, et al.A carrier fusion significantly induces unfolded protein response in heterologous protein production by Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2011, 92(6):1197-1206. [31] Lombrana M, Moralejo F, Pinto RJ.Modulation of Aspergillus awamori thaumatin secretion by modification of bipA gene expression[J]. Appl Environ Microbiol, 2004, 70(9):5145-5152. [32] Moralejo FJ, Watson AJ, Jeenes DJ, et al.A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspegillus awamori[J]. Mol Genet Genom, 2001, 266(2):246-253. [33] Yoon J, Kikuma T, Maruyama J, et al.Enhanced production of bovine chymosin by autophagy deficiency in the filamentous fungus Aspergillus oryzae[J]. PLoS One, 2013, 8(4):e62512. [34] Hoang HD, Maruyama J, Kitamoto K.Modulating endoplasmic reticulum-Golgi cargo receptors for improving secretion of carrier-fused heterologous proteins in the filamentous fungus Aspergillus oryzae[J]. Appl Environ Microbiol, 2015, 81(2):533-543. [35] Gasser B, Mattanovich D.Antibody production with yeasts and filamentous fungi:on the road to large scale?[J]. Biotechnology Letters, 2007, 29(2):201. [36] Maras M, Van DI, Contreras R, et al.Filamentous fungi as production organisms for glycoproteins of bio-medical interest[J]. Glycoconjugate Journal, 1999, 16(2):99-107. [37] Ohno A, Maruyama J, Nemoto T, et al.A carrier fusion significantly induces unfolded protein response in heterologous protein production by Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2011, 92(6):1197-1206. [38] Tsuchiya K, Nagashima T, Yamamoto Y, et al.High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae[J]. Biosci Biotechnol Biochem, 1994, 58(5):895-899. [39] Nemoto T, Watanabe T, Mizogami Y, et al.Isolation of Aspergillus oryzae mutants for heterologous protein production from a double proteinase gene disruptant[J]. Appl Microbiol Biotechnol, 2009, 82(6):1105-1114. [40] Ham A, Ezzat SM, Houseny AM.Improved production of kojic acid by mutagenesis of Aspergillus flavus HAk1 and Aspergillus oryzae HAk2 and their potential antioxidant activity[J]. Biotech, 2017, 7(5):276. [41] 胡杰, 潘力, 罗立新, 等. 米曲霉孢子原生质体复合诱变及高活力蛋白酶菌株选育[J]. 食品工业科技, 2007(5):116-118. [42] Murthy PS, Kusumoto KI.Acid protease production by Aspergillus oryzae, on potato pulp powder with emphasis on glycine releasing activity:A benefit to the food industry[J]. Food & Bioproducts Processing, 2015, 96:180-188. [43] Wang S, Duan M, Liu Y, et al.Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling[J]. Biotechnology Letters, 2016, 39(3):391-396. [44] Ogasawara H, Obata H, Hata Y, et al.Crawler, a novel Tc1/mariner-type transposable element in Aspergillus oryzae transposes under stress conditions[J]. Fungal Genetics & Biology, 2009, 46(6-7):441-449. [45] Jin FJ, Hara S, Sato A, et al.Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae[J]. Journal of General & Applied Microbiology, 2014, 60(1):1-6. [46] Ehrlich KC, Mack BM.Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae[J]. Toxins, 2014, 6(6):1916. [47] Takeda I, Umemura M, Koike H, et al.Motif-independent prediction of a secondary metabolism gene cluster using comparative genomics:application to sequenced genomes of Aspergillus and ten other filamentous fungal species[J]. DNA Research, 2014, 21(4):447-457. [48] Marui J, Ohashikunihiro S, Ando T, et al.Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering[J]. Journal of Bioscience & Bioengineering, 2010, 110(1):8-11. [49] Yamada R, Yoshie T, Wakai S, et al.Aspergillus oryzae -based cell factory for direct kojic acid production from cellulose[J]. Microbial Cell Factories, 2014, 13(1):71. [50] Sanchez JF, Somoza AD, Keller NP, et al.Advances in Aspergillus secondary metabolite research in the post-genomic era[J]. Natural Product Reports, 2012, 29(3):351. [51] Amare MG, Keller NP.Molecular mechanisms of Aspergillus flavus secondary metabolism and development[J]. Fungal Genetics & Biology, 2014, 66(3):11. [52] Ichinose S, Tanaka M, Shintani T, et al.Improved α-amylase production by Aspergillus oryzae after a double deletion of genes involved in carbon catabolite repression[J]. Appl Microbiol Biotechnol, 2014, 98(1):335-343. |
[1] | SHI Ya-nan, WANG De-pei, WANG Yi-chuan, ZHOU Hao, XUE Xian-li. Effects of msn2 Knock-out on the Growth and Kojic Acid Production of Aspergillus oryzae [J]. Biotechnology Bulletin, 2022, 38(8): 188-197. |
[2] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[3] | CHANG Han-wen, ZHENG Xin-ling, LUO Jian-mei, WANG Min, SHEN Yan-bing. Tolerance Elements and Their Application Progress on the Construction of Highly-efficient Microbial Cell Factory [J]. Biotechnology Bulletin, 2020, 36(6): 13-34. |
[4] | WU Qin-qin, SUN Min, CHEN Yu, FU Ya-qin, ZENG Bin, HE Bin. Strategies and Advances in Functional Genomics of Aspergillus oryzae [J]. Biotechnology Bulletin, 2019, 35(8): 186-192. |
[5] | ZHOU Yi-kang, WU Yi-nan, WANG Tian-min, ZHENG Xiang, XING Xin-hui, ZHANG Chong. Metabolite Biosensor:A Useful Synthetic Biology Tool to Assist the Construction of Microbial Cell Factory [J]. Biotechnology Bulletin, 2017, 33(1): 1-11. |
[6] | Pang Zhiwei, Lu Xu, Hu Jiangchun, Cheng Xiaoqi, Wang Nan, Song Yanling. Screening and Identification of a Sponge-associated Fungus HMP-F66 Inducing Oxidative Burst in Tobacco Cell Suspensions [J]. Biotechnology Bulletin, 2015, 31(7): 174-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||