Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (1): 98-107.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0132
Previous Articles Next Articles
YANG Fu-rong(), WANG Xiao-hong(), XIAO Qi, FANG Juan, LI Li-hua
Received:
2021-02-02
Online:
2022-01-26
Published:
2022-02-22
Contact:
WANG Xiao-hong
E-mail:854329203@qq.com;wxhznl@126.com
YANG Fu-rong, WANG Xiao-hong, XIAO Qi, FANG Juan, LI Li-hua. Physiological Response of Hibiscus syriacus Varieties to Cadmium Stress and Evaluation of Cadmium Tolerance[J]. Biotechnology Bulletin, 2022, 38(1): 98-107.
品种 Varieties | 镉处理浓度 Cadmium treatment concentration/(mg·kg-1) | 株高增长量 Growth of plant height/cm | 地径增长量 Growth of the earth’s path/cm |
---|---|---|---|
‘牡丹’ ‘f. paeoniflorus’ | 0 | 35.633±23.981a | 0.226±0.212a |
50 | 18.267±3.19ab | 0.316±0.087a | |
100 | 20.667±12.254ab | 0.236±0.109a | |
200 | 7.667±1.704b | 0.131±0.087a | |
400 | 5.6±1.803b | 0.101±0.052a | |
‘红星’ ‘Hong xing’ | 0 | 17.833±5.829ab | 0.224±0.137a |
50 | 33.533±14.994a | 0.221±0.114a | |
100 | 21.567±13.428ab | 0.203±0.063a | |
200 | 22.8±3.951ab | 0.161±0.077a | |
400 | 6.667±3.63b | 0.101±0.096a | |
‘白花重瓣’ ‘f. albus-plenus’ | 0 | 13.067±9.028a | 0.26±0.158a |
50 | 22.4±14.245a | 0.217±0.151a | |
100 | 10.2±1.97a | 0.12±0.048a | |
200 | 8.033±6.463a | 0.097±0.044a | |
400 | 7.2±5.012a | 0.094±0.019a |
Table 1 Changes of growth indexes of three Hibiscus syriacus varieties treated with different cadmium concentrations for 60 d
品种 Varieties | 镉处理浓度 Cadmium treatment concentration/(mg·kg-1) | 株高增长量 Growth of plant height/cm | 地径增长量 Growth of the earth’s path/cm |
---|---|---|---|
‘牡丹’ ‘f. paeoniflorus’ | 0 | 35.633±23.981a | 0.226±0.212a |
50 | 18.267±3.19ab | 0.316±0.087a | |
100 | 20.667±12.254ab | 0.236±0.109a | |
200 | 7.667±1.704b | 0.131±0.087a | |
400 | 5.6±1.803b | 0.101±0.052a | |
‘红星’ ‘Hong xing’ | 0 | 17.833±5.829ab | 0.224±0.137a |
50 | 33.533±14.994a | 0.221±0.114a | |
100 | 21.567±13.428ab | 0.203±0.063a | |
200 | 22.8±3.951ab | 0.161±0.077a | |
400 | 6.667±3.63b | 0.101±0.096a | |
‘白花重瓣’ ‘f. albus-plenus’ | 0 | 13.067±9.028a | 0.26±0.158a |
50 | 22.4±14.245a | 0.217±0.151a | |
100 | 10.2±1.97a | 0.12±0.048a | |
200 | 8.033±6.463a | 0.097±0.044a | |
400 | 7.2±5.012a | 0.094±0.019a |
Fig. 1 Changes in chlorophyll A+B content of three H. syriacus varieties under cadmium stress Different lowercase letters indicate significant difference(P < 0.05),the same below
Cd处理浓度Cadmium concentration/(mg·kg-1) | 品种 Varieties | 隶属函数值 Membership function value | 平均值 Average value | 排名 Ranking | ||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | ||||
50 | ‘牡丹’(‘f. paeoniflorus’) | 0.368 | 0.417 | 0.392 | 0.539 | 0.556 | 0.367 | 0.481 | 0.446 | 3 |
‘红星’(‘Hong xing’) | 0.532 | 0.634 | 0.461 | 0.642 | 0.500 | 0.371 | 0.409 | 0.507 | 1 | |
‘白花重瓣’(‘f. albus-plenus’) | 0.578 | 0.353 | 0.560 | 0.355 | 0.667 | 0.422 | 0.518 | 0.493 | 2 | |
100 | ‘牡丹’(‘f. paeoniflorus’) | 0.560 | 0.454 | 0.557 | 0.475 | 0.667 | 0.410 | 0.520 | 0.520 | 3 |
‘红星’(‘Hong xing’) | 0.460 | 0.559 | 0.646 | 0.646 | 0.567 | 0.639 | 0.529 | 0.578 | 1 | |
‘白花重瓣’(‘f. albus-plenus’) | 0.421 | 0.403 | 0.637 | 0.477 | 0.630 | 0.599 | 0.515 | 0.526 | 2 | |
200 | ‘牡丹’(‘f. paeoniflorus’) | 0.480 | 0.479 | 0.420 | 0.381 | 0.500 | 0.600 | 0.426 | 0.469 | 2 |
‘红星’(‘Hong xing’) | 0.608 | 0.544 | 0.603 | 0.658 | 0.400 | 0.465 | 0.467 | 0.535 | 1 | |
‘白花重瓣’(‘f. albus-plenus’) | 0.399 | 0.462 | 0.427 | 0.400 | 0.452 | 0.399 | 0.537 | 0.439 | 3 | |
400 | ‘牡丹’(‘f. paeoniflorus’) | 0.429 | 0.427 | 0.384 | 0.548 | 0.524 | 0.353 | 0.521 | 0.455 | 3 |
‘红星’(‘Hong xing’) | 0.463 | 0.560 | 0.337 | 0.394 | 0.422 | 0.495 | 0.602 | 0.468 | 2 | |
‘白花重瓣’(‘f. albus-plenus)’ | 0.480 | 0.526 | 0.558 | 0.502 | 0.377 | 0.592 | 0.500 | 0.505 | 1 |
Table 2 Comprehensive evaluation of Cd resistance of three H. syriacus varieties
Cd处理浓度Cadmium concentration/(mg·kg-1) | 品种 Varieties | 隶属函数值 Membership function value | 平均值 Average value | 排名 Ranking | ||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | ||||
50 | ‘牡丹’(‘f. paeoniflorus’) | 0.368 | 0.417 | 0.392 | 0.539 | 0.556 | 0.367 | 0.481 | 0.446 | 3 |
‘红星’(‘Hong xing’) | 0.532 | 0.634 | 0.461 | 0.642 | 0.500 | 0.371 | 0.409 | 0.507 | 1 | |
‘白花重瓣’(‘f. albus-plenus’) | 0.578 | 0.353 | 0.560 | 0.355 | 0.667 | 0.422 | 0.518 | 0.493 | 2 | |
100 | ‘牡丹’(‘f. paeoniflorus’) | 0.560 | 0.454 | 0.557 | 0.475 | 0.667 | 0.410 | 0.520 | 0.520 | 3 |
‘红星’(‘Hong xing’) | 0.460 | 0.559 | 0.646 | 0.646 | 0.567 | 0.639 | 0.529 | 0.578 | 1 | |
‘白花重瓣’(‘f. albus-plenus’) | 0.421 | 0.403 | 0.637 | 0.477 | 0.630 | 0.599 | 0.515 | 0.526 | 2 | |
200 | ‘牡丹’(‘f. paeoniflorus’) | 0.480 | 0.479 | 0.420 | 0.381 | 0.500 | 0.600 | 0.426 | 0.469 | 2 |
‘红星’(‘Hong xing’) | 0.608 | 0.544 | 0.603 | 0.658 | 0.400 | 0.465 | 0.467 | 0.535 | 1 | |
‘白花重瓣’(‘f. albus-plenus’) | 0.399 | 0.462 | 0.427 | 0.400 | 0.452 | 0.399 | 0.537 | 0.439 | 3 | |
400 | ‘牡丹’(‘f. paeoniflorus’) | 0.429 | 0.427 | 0.384 | 0.548 | 0.524 | 0.353 | 0.521 | 0.455 | 3 |
‘红星’(‘Hong xing’) | 0.463 | 0.560 | 0.337 | 0.394 | 0.422 | 0.495 | 0.602 | 0.468 | 2 | |
‘白花重瓣’(‘f. albus-plenus)’ | 0.480 | 0.526 | 0.558 | 0.502 | 0.377 | 0.592 | 0.500 | 0.505 | 1 |
[1] | 中华人民共和国环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京:中华人民共和国国家环境保护部, 中华人民共和国国土资源部, 2014(5):10-11. |
Ministry of environmental protection, Ministry of land and resources of the people’s Republic of China. Bulletin of national soil pollution survey[R]. Beijing:Ministry of environmental protection, Ministry of land and resources of the people’s Republic of China, 2014(5):10-11. | |
[2] |
Wu M, Luo Q, Liu S, et al. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation[J]. Ecotoxicol Environ Saf, 2018, 162:35-41.
doi: 10.1016/j.ecoenv.2018.06.049 URL |
[3] |
Chen H, Yang X, Wang P, et al. Dietary cadmium intake from rice and vegetables and potential health risk:a case study in Xiangtan, Southern China[J]. Sci Total Environ, 2018, 639:271-277.
doi: 10.1016/j.scitotenv.2018.05.050 URL |
[4] |
Xie LH, Tang SQ, Wei XJ, et al. The cadmium and lead content of the grain produced by leading Chinese rice cultivars[J]. Food Chem, 2017, 217:217-224.
doi: S0308-8146(16)31339-5 pmid: 27664629 |
[5] |
Kumar P, Mandal B, Dwivedi P. Heavy metals scavenging of soils and sludges by ornamental plants[J]. J Appl Hortic, 2011, 13(2):144-146.
doi: 10.37855/jah.2011.v13i02.32 URL |
[6] |
许艳萍, 杨明, 郭鸿彦, 等. 5个工业大麻品种对5种重金属污染土壤的修复潜力[J]. 作物学报, 2020, 46(12):1970-1978.
doi: 10.3724/SP.J.1006.2020.04010 |
Xu YP, Yang M, Guo HY, et al. Phytoremediation potential of five industrial hemp varieties on five heavy metal polluted soils[J]. Acta Agron Sin, 2020, 46(12):1970-1978. | |
[7] | 赵串串, 温怀峰. Cd胁迫下白桦光合及叶绿素含量的响应研究[J]. 陕西科技大学学报, 2020, 38(2):20-26. |
Zhao CC, Wen HF. Study on responses of photosynjournal and chlorophyll content of Betula platyphylla Suk. under Cd stress[J]. J Shaanxi Univ Sci Technol, 2020, 38(2):20-26. | |
[8] | 杨塍希, 国伟强, 和文懿, 等. 火炬树幼苗对镉胁迫的生理响应及积累特性[J]. 福建农林大学学报:自然科学版, 2020, 49(3):334-340. |
Yang CX, Guo WQ, He WY, et al. Effects of Cd2+ on the physiological response and accumulation characteristics of Rhus typhina[J]. J Fujian Agric For Univ:Nat Sci Ed, 2020, 49(3):334-340. | |
[9] |
Liu Y, Zhang C, Zhao Y, et al. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil[J]. Sci Total Environ, 2017, 579:1282-1288.
doi: 10.1016/j.scitotenv.2016.11.115 URL |
[10] | 徐瑢. 盐胁迫对木槿几种生理指标的影响[J]. 天津农业科学, 2015, 21(6):142-145. |
Xu R. Effects of salt stress on physiological of Hibiscus syriacus[J]. Tianjin Agric Sci, 2015, 21(6):142-145. | |
[11] | 张锦弦, 施钦. 铝胁迫对木槿生理及光合光响应特性的影响[J]. 现代农业科技, 2018(19):166-168. |
Zhang JX, Shi Q. Effects of aluminum stress on physiological and photosynthetic response characteristics of Hibiscus syriacus[J]. Mod Agric Sci Technol, 2018(19):166-168. | |
[12] | 王巍伟. 新引进木槿品种的抗旱性评价[D]. 北京:北京林业大学, 2009. |
Wang WW. The evaluation on drought resistance of the introduced cultivars of Hibiscus syriacus[D]. Beijing:Beijing Forestry University, 2009. | |
[13] | 蔡卫佳, 阮倩倩, 谭军. 不同木槿品种抗寒性研究[J]. 园艺与种苗, 2019, 39(5):11-13, 53. |
CAI WJ, Ruan QQ, Tan J. Study on cold resistance of different Hibiscus syriacus varieties[J]. Hortic Seed, 2019, 39(5):11-13, 53. | |
[14] | 王小雪. 海滨木槿不同家系对重金属Cd胁迫的响应[D]. 重庆:西南大学, 2012. |
Wang XX. Response to Cd stress of different families of Hibiscus hamabo sieb. et zucc[D]. Chongqing:Southwest University, 2012. | |
[15] | 邓勇. 红麻耐镉生理响应相关机制的研究[D]. 长沙:湖南农业大学, 2016. |
Deng Y. The study of physiological response mechanism in kenaf under cadmium stress conditions[D]. Changsha:Hunan Agricultural University, 2016.s | |
[16] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
Li HS. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[17] | 陈建勋, 王晓峰. 植物生理学实验指导[M]. 2版. 广州: 华南理工大学出版社, 2006:117-118. |
Chen JX, Wang XF. Experimental guidance of plant physiology[M]. Guangzhou: South China University of Technology Press, 2006:117-118. | |
[18] | 王佳星, 余国源, 谢瑛, 等. 土壤镉胁迫对紫金牛生理特性的影响[J]. 东北林业大学学报, 2019, 47(5):25-29. |
Wang JX, Yu GY, Xie Y, et al. Effects of Cd stress on physiological characteristics of Ardisia japonica[J]. J Northeast For Univ, 2019, 47(5):25-29. | |
[19] | 温瑀, 穆立蔷. 土壤铅、镉胁迫对4种绿化植物生长、生理及积累特性的影响[J]. 水土保持学报, 2013, 27(5):234-239. |
Wen Y, Mu LQ. Effects of soil pb, Cd stress on the growth, physiological and accumulating characteristics of four ornamental trees[J]. J Soil Water Conserv, 2013, 27(5):234-239. | |
[20] | 宋子文, 刘焕臻, 马晓雨, 等. 镉胁迫对大青杨不同倍体的生长及生理生化的影响[J]. 植物研究, 2020, 40(5):728-734. |
Song ZW, Liu HZ, Ma XY, et al. Effects of cadmium stress on growth, physiology and biochemistry of different ploidy of Populus ussuriensis[J]. Bull Bot Res, 2020, 40(5):728-734. | |
[21] | 铁得祥, 胡红玲, 喻秀艳, 等. 桢楠幼树光合特性对镉胁迫的响应[J]. 生态学报, 2020, 40(11):3738-3746. |
Tie DX, Hu HL, Yu XY, et al. Responses of photosynthetic characteristics and chlorophyll fluorescence parameters of Phoebe zhennan saplings to cadmium stress[J]. Acta Ecol Sin, 2020, 40(11):3738-3746. | |
[22] | 周蛟, 韩盼盼, 潘远智, 等. Cd胁迫对两种龙葵光合生理及叶绿素荧光特性的影响[J]. 农业环境科学学报, 2021, 40(1):26-34. |
Zhou J, Han PP, Pan YZ, et al. Effects of cadmium stress on photosynthetic physiology and chlorophyll fluorescence in Solanum nigrum and Solanum americanum[J]. J Agro Environ Sci, 2021, 40(1):26-34. | |
[23] | 刘朝荣, 张柳青, 杨艳 等. 珙桐幼苗生理生化指标对重金属铅、镉胁迫的响应[J]. 广西植物, 2021, 41(9):1401-1410. |
Liu CR, Zhang LQ, Yang Y, et al. Effects of lead and cadmium on physiology indexes of Davidia involucrate[J ]. Guihaia, 2021, 41(9):1401-1410. | |
[24] | 孙赛初, 王焕校, 李启任. 水生维管束植物受镉污染后的生理变化及受害机制初探[J]. 植物生理学报, 1985, 11(2):113-121. |
Sun SC, Wang HX, Li QR. Preliminary studies on physiological changes and injury mechanism in aquatic vascular plants treated with cadmium[J]. J Plant Physiol, 1985, 11(2):113-121. | |
[25] | 刘翰升, 赵春莉, 刘玥, 等. Cd胁迫对波斯菊种子萌发、幼苗耐性及富集的影响[J]. 河南农业科学, 2020, 49(5):126-133. |
Liu HS, Zhao CL, Liu Y, et al. Seed germination, seedling tolerance and enrichment effect of Cosmos bipinnata under cadmium stress[J]. J Henan Agric Sci, 2020, 49(5):126-133. | |
[26] | 贾茵, 刘才磊, 兰晓悦, 等. 镉胁迫对小报春幼苗生长及生理特性的影响[J]. 西北植物学报, 2020, 40(3):454-462. |
Jia Y, Liu CL, Lan XY, et al. Effect of cadmium stress on the growth and physiological characteristics of Primula forbesii seedlings[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(3):454-462. | |
[27] | 李佩华, 刘小文. 重金属铅、镉胁迫对马铃薯生长及抗氧化酶系统的影响[J]. 云南农业大学学报:自然科学, 2014, 29(5):746-751. |
Li PH, Liu XW. Effects on the growth and the system of anti-oxidation enzymes of potatoes under Pb and Cd pollution stress[J]. J Yunnan Agric Univ:Nat Sci, 2014, 29(5):746-751. | |
[28] | 李小红, 李辉信, 任俊鹏, 等. Cd胁迫对不同砧穗组合葡萄植株光合作用、膜脂过氧化和抗氧化酶活性的影响[J]. 河南农业科学, 2018, 47(3):100-104. |
Li XH, Li HX, Ren JP, et al. Effect of cadmium stress on photosynjournal, lipid peroxidation and antioxidant enzymes activities of grapevine with different scion-rootstock combinations[J]. J Henan Agric Sci, 2018, 47(3):100-104. | |
[29] | 李佳佳, 张乃明, 杨莉, 等. Cd胁迫危害三七生长的生理机制研究[J]. 土壤通报, 2019, 50(1):177-182. |
Li JJ, Zhang NM, Yang L, et al. Effects of cadmium stress on growth, physiology and biochemistry of Panax notoginseng[J]. Chin J Soil Sci, 2019, 50(1):177-182. | |
[30] | 闫晶, 姬文秀, 石贤吉, 等. 镉胁迫对不同烟草品种生长发育的影响[J]. 中国农业大学学报, 2019, 24(5):30-38. |
Yan J, Ji WX, Shi XJ, et al. Effects of cadmium stress on the growth and development of different tobacco varieties[J]. J China Agric Univ, 2019, 24(5):30-38. | |
[31] | 刘翰升, 赵春莉, 刘玥, 等. 镉胁迫对万寿菊属植物幼苗生理及富集的影响[J]. 福建农业学报, 2019, 34(10):1221-1227. |
Liu HS, Zhao CL, Liu Y, et al. Effects of cadmium stress on physiology and enrichment of Tagetes seedlings[J]. Fujian J Agric Sci, 2019, 34(10):1221-1227. | |
[32] | 马月花, 郭晓瑞, 杨楠, 等. 黄芪幼苗对镉胁迫的生理响应机制[J]. 植物研究, 2019, 39(4):497-504. |
Ma YH, Guo XR, Yang N, et al. Physiological mechanisms in Astragalus membranaceus seedlings responding to cadmium stress[J]. Bull Bot Res, 2019, 39(4):497-504. |
[1] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[2] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[3] | LIU Hui, LU Yang, YE Xi-miao, ZHOU Shuai, LI Jun, TANG Jian-bo, CHEN En-fa. Comparative Transcriptome Analysis of Cadmium Stress Response Induced by Exogenous Sulfur in Tartary Buckwheat [J]. Biotechnology Bulletin, 2023, 39(5): 177-191. |
[4] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[5] | YU Guo-hong, LIU Peng-cheng, LI Lei, LI Ming-zhe, CUI Hai-ying, HAO Hong-bo, GUO An-qiang. Physiological Responses of Potato in Different Genotypes to Drought Stress [J]. Biotechnology Bulletin, 2022, 38(5): 56-63. |
[6] | HU Yan-jiao, CHEN Mei-feng, QIANG Yu, LI Hai-yan, LIU Jing, QIN Fan-xin. Alleviation Mechanisms of Zinc-selenium Interaction on the Cadmium Toxicity in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 143-152. |
[7] | ZU Guo-qiang, HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin. Regulatory Role of Burkholderia sp. GD17 in Rice Seedling’s Responses to Cadmium Stress [J]. Biotechnology Bulletin, 2022, 38(4): 153-162. |
[8] | WANG Ling, XIANG Wen-zhou, WEI Hua-ning, LV Jin-ting, WU Hua-lian, WU Hou-bo. Study on the Algicidal Characteristics and Physiological Response of Microbacterium sp. CBA01 to Phaeocystis globosa [J]. Biotechnology Bulletin, 2021, 37(10): 91-99. |
[9] | WANG Zhu-cheng, LIU Hui, LI Rong-hua. Effects of Exogenous Sulfur on Photosynthetic Characteristics and Mineral Elements Absorption in Portulaca oleracea Under Cadmium Stress [J]. Biotechnology Bulletin, 2020, 36(3): 133-140. |
[10] | WANG Zhu-cheng, LIU Hui, LI Rong-hua, CHEN Xin, LI Xin, LU Zhi-yuan. Physiological Mechanism of Exogenous Ethylene and Sulfur in Alleviating Cadmium Stress in Portulaca oleracea [J]. Biotechnology Bulletin, 2019, 35(10): 71-79. |
[11] | MA Xiao-li, JI Rui-ping, TIAN Bao-hua, HUO Jian-xin. Effects of Nitric Oxide on Oxidative Damage Metabolism in Wheat Seedling Under Cadmium Stress [J]. Biotechnology Bulletin, 2017, 33(5): 102-107. |
[12] | Li Hongbo, Pang Binshuang, Liu Lihua, Liu Yangna, Zhao Changping, Chen Jingtang. Construction of DNA Fingerprinting and Analysis of Genetic Diversity for Wheat Varieties(Lines) in Regional Test of Hebei [J]. Biotechnology Bulletin, 2015, 31(6): 93-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||