Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (3): 171-182.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0923
Previous Articles Next Articles
LIU Chang-yu1, CHEN Xun1, LONG Yu-qing1, CHEN Ya1, LIU Xiang-dan1,2, ZHOU Ri-bao1
Received:
2018-10-27
Online:
2019-03-26
Published:
2019-04-03
LIU Chang-yu, CHEN Xun, LONG Yu-qing, CHEN Ya, LIU Xiang-dan, ZHOU Ri-bao. Research Advances in Genes Involved in Ethylene Biosynthesis and Signal Transduction During Flower Senescence[J]. Biotechnology Bulletin, 2019, 35(3): 171-182.
[1] 江苏新医学院. 中药大辞典[M]. 上海:上海科学技术出版社, 2002. [2] Lin ZF, Zhong S, Grierson D.Recent advances in ethylene research[J]. Journal of Experimental Botany, 2009, 60(12):3311-3336. [3] 张丽艳, 严翔, 方贻文, 等. 果蔬成熟乙烯生物合成与调控研究进展[J]. 现代园艺, 2014(11):12-15. [4] 刘进平. 乙烯生物合成关键酶基因研究进展[J]. 热带农业科 学, 2013, 33(1):51-57. [5] 余义勋, 刘娟旭, 刘玲. 花衰老相关的乙烯信号转导基因研究进展[J]. 生物技术通讯, 2008, 19(3):472-474. [6] Rogers HJ.From models to ornamentals:how is flower senescence regulated?[J]. Plant Molecular Biology, 2013, 82(6):563-574. [7] Tripathi SK, Tuteja N.Integrated signaling in flower senescence [J]. Plant Signaling & Behavior, 2007, 2(6):437-445. [8] van Doorn WG, Woltering EJ. Physiology and molecular biology of petal senescence[J]. Journal of Experimental Botany, 2008, 59(3):453-480. [9] 陈驰. 大丽花花瓣衰老相关基因结构与表达特征的研究[D]. 苏州:苏州大学, 2015. [10] Ronen M, Mayak S.Interrelationship between abscisic acid and ethylene in the control of senescence processes in carnation flowers[J]. Journal of Experimental Botany, 1981, 32(129):759-765. [11] Yand SF, Hoffman NE.Ethylene biosynthesis and its regulation in higher plants[J]. Annu Rev Plant Physiol, 1984, 35(1):155-189. [12] 魏文辉, 王力军, 覃瑞, 等. 牡丹切花衰老过程中内源激素水平变化的研究[J]. 湖北民族学院学报:自然科学版, 2000, 18(4):1-6. [13] 田晓岩, 刘进平. 生长调节物质对花瓣衰老的调控作用[C]// 中国观赏园艺研究进展论文集. 青岛:中国园艺办公观赏园艺专业委员会, 2014:454-461. [14] 刘建新, 丁华侨, 郁永明, 等. 擎天凤梨SAMs基因的分离及开花期的表达分析[J]. 核农学报, 2017, 31(4):671-679. [15] Mcmurchie EJ, Mcglasson WB, Eaks IL.Treatment of fruit with propylene gives information about the biogenesis of ethylene[J]. Nature, 1972, 237(5352):235-236. [16] 黄凤兰, 解立波, 李国瑞, 等. 乙烯信号转导与合成基因在延长花期中的应用[J]. 内蒙古民族大学学报:自然科学版, 2009, 24(2):176-179. [17] Lieberman M, Mapson LW.Genesis and Biogenesis of Ethylene[J]. Nature, 1964, 204(4956):343-345. [18] Lieberman M, Kunishi A, Mapson LW, et al.Stimulation of ethylene production in apple tissue slices by methionine[J]. Plant Physiology, 1966, 41(3):376-382. [19] Adams DO, Yang SF.Ethylene biosynthesis:Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene[J]. Proc Natl Acad Sci USA, 1979, 76(1):170-174. [20] 朱晓仙. 玉簪花中3个乙烯生物合成相关基因的克隆及其表达分析[D]. 金华:浙江师范大学, 2012. [21] Larsen PB.Mechanisms of ethylene biosynthesis and response in plants[J]. Essays in Biochemistry, 2015, 58:61-70. [22] Bakshi A, Shemansky JM, Chang C, et al.History of research on the plant hormone ethylene[J]. Journal of Plant Growth Regulation, 2015, 34(4):809-827. [23] Liu CY, Lü RH, Li J, et al.Characterization and expression profiles of MaACS and MaACO genes from mulberry(Morus alba L.)[J]. Journal of Zhejiang University Science B, 2014, 15(7):611-623. [24] 周琦, 郑幸果, 何辉煌, 等. 植物S-腺苷甲硫氨酸合成酶的新功能展望[J]. 生命的化学, 2017, 37(4):521-527. [25] 吴秋红, 张自德, 王峰. 红树植物杯萼海桑Sams基因的克隆与生物信息学分析[J]. 广西植物, 2013, 33(6):846-851. [26] Kim SB, Yu JG, Lee GH, et al.Characterization of Brassica rapa S-adenosyl-L-methionine synthetase gene including its roles in biosynthesis pathway[J]. Horticulture Environment & Biotechnology, 2012, 53(1):57-65. [27] Peleman J, Saito K, Cottyn B, et al.Structure and expression analyses of the S -adenosylmethionine synthetase gene family in Arabidopsis thaliana[J]. Gene, 1989, 84(2):359-369. [28] Peleman J, Boerjan W, Engler G, et al.Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding s-adenosylmethionine synthetase[J]. The Plant Cell, 1989, 1:81-93. [29] Breusegem FV, Dekeyser R, Gielen J, et al.Characterization of a S-adenosylmethionine synthetase gene in rice[J]. Plant Physiology, 1994, 105:1463-1464. [30] Larsen PB, Woodson WR.Cloning and nucleotide sequence of a S-adenosylmethionine synthetase cdna from carnation[J]. Plant Physiology, 1991, 96(3):997-999. [31] Li XD, Xia B, Wang R, et al.Molecular cloning and characteriza-tion of S-adenosylmethionine synthetase gene from Lycoris radiata [J]. Molecular Biology Reports, 2013, 40(2):1255-1263. [32] 冯艳飞, 梁月荣. 茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J]. 茶叶科学, 2001, 21(1):21-25. [33] Ding C, Chen T, Yang Y, et al.Molecular cloning and characteriza-tion of an S-adenosylmethionine synthetase gene from Chorispora bungeana[J]. Gene, 2015, 572(2):205-213. [34] Yamagami T, Tsuchisaka A, Yamada K, et al.Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family[J]. Journal of Biological Chemistry, 2003, 278(49):49102-49112. [35] 吕淑芳, 江静. 拟南芥乙烯合成酶acs基因家族研究进展[J]. 生物技术通报, 2014, 30(11):7-13. [36] 骆兴菊. 植物激素脱落酸通过诱导乙烯的生物合成抑制拟南芥主根生长[D]. 北京:中国农业大学, 2014. [37] 魏云潇, 叶兴乾. 果蔬采后成熟衰老酶与保护酶类系统的研究进展[J]. 食品工业科技, 2009, 30(12):427-431. [38] Gupta A, Pal RK, Rajam MV.Delayed ripening and improved fruit processing quality in tomato by rnai-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene[J]. Journal of Plant Physiology, 2013, 170(11):987-995. [39] Oeller PW, Lu MW, Taylor LP, et al.Reversible inhibition of tomato fruit senescence by antisense RNA[J]. Science, 1991, 254(5030):437-439. [40] 白云凤, 张爱萍, 闫建俊, 等. 靶向番茄slACS2基因crispr-cas9 sgRNA的设计和分析[J]. 生物信息学, 2017, 15(1):7-15. [41] Martínez C, Manzano S, Megías Z, et al.Molecular and functional characterization of cpacs27a, gene reveals its involvement in monoecy instability and other associated traits in squash(Cucurbita pepo L.)[J]. Planta, 2014, 239(6):1201-1215. [42] Ma N, Cai L, Lu WJ, et al.Exogenous ethylene influences flower opening of cut roses(Rosa hybrida)by regulating the genes encoding ethylene biosynthesis enzymes[J]. Science in China, 2005, 48(5):434-444. [43] 孙申申, 温秀萍, 杨菲颖, 等. ‘云香’水仙ACC合成酶基因NtACS1的克隆及遗传转化[J]. 西北植物学报, 2017, 37(2):250-257. [44] 孙申申. ‘云香’水仙ACS基因和ACO基因的克隆分析及遗传转化[D]. 福州:福建农林大学, 2018. [45] Shi LS, Liu JP.Molecular cloning and expression analysis of an 1-aminocyclopropane-1-carboxylate synthase gene from Oncidium gower ramsey[J]. Biochemical & Biophysical Research Communications, 2016, 469:203-209. [46] 熊莉. 拟南芥ACS7基因转录后调控机制的研究[D]. 天津:南开大学, 2014. [47] Ludwików A, Ciesla A, Kasprowicz-Maluskl A, et al.Arabidopsis protein phosphatase 2C ABI1 interacts with type I ACC synthases and is involved in the regulation of ozone-induced ethylene biosynthesis[J]. Molecular Plant, 2014, 7(6):960-976. [48] Christians MJ, Gingerich DJ, Hansen M, et al.The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels[J]. The Plant Journal, 2009, 57(2):332-345. [49] Skottke KR, Yoon GM, Kieber JJ, et al.Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms[J]. PLoS Genetics, 2011, 7(4):1-13. [50] Prasad ME, Schofield A, Lyzenga W, et al.Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis[J]. Plant Physiology, 2010, 153(11):1587-1596. [51] Lyzenga WJ, Booth JK, Stone SL.The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7[J]. The Plant Journal, 2012, 71:23-34. [52] 牛苏燕. 蝴蝶兰ACC合成酶(ACS)反义基因植物表达载体的构建及遗传转化[D]. 郑州:河南农业大学, 2012. [53] 王宇腾, 崔波, 蒋素华, 等. 蝴蝶兰acc氧化酶和acc合成酶融合反义表达载体的构建[J]. 河南农业科学, 2011, 40(6):115-117, 121. [54] 孙晶. 利用RNA干扰技术抑制洋桔梗ACC合酶基因表达的研究[D]. 南京:南京师范大学, 2012. [55] Trusov Y, Botella JR.Silencing of the acc synthase gene acacs2 causes delayed flowering in pineapple[Ananas comosus(L.)merr. ][J]. Journal of Experimental Botany, 2006, 57(14):3953-3960. [56] 孙梦婷, 范晓蕾, 郭荣波, 等. 生物乙烯研究进展[J]. 生物技术通报, 2016, 32(2):38-45. [57] 姚雪, 侯和胜. 高等植物aco基因研究进展[J]. 安徽农学通报, 2013, 19(1/2):16-17. [58] Zhao DQ, Tao J, Zhou CH, et al.Expression, cloning and characterization of acc synthase and acc oxidase genes in Paeonia lactiflora[J]. International Journal of Agriculture & Biology, 2014, 16(4):777-782. [59] Tanase K, Otsu S, Satoh S, et al.Expression levels of ethylene biosynthetic genes and senescence-related genes in carnation(Dianthus caryophyllus L.)with ultra-long-life flowers[J]. Scientia Horticulturae, 2015, 183:31-38. [60] 田晓岩, 石乐松, 潘英文, 等. 文心兰OnACO2基因的克隆及表达分析[J]. 分子植物育种, 2015, 13(7):1602-1610. [61] 李栀恩. 番茄ACC氧化酶家族基因的表达研究及其在果实乙烯合成过程中的功能分析[D]. 重庆:重庆大学, 2012. [62] Jafari Z, Haddad R, Hosseini R, et al.Cloning, identification and expression analysis of acc oxidase gene involved in ethylene production pathway[J]. Molecular Biology Reports, 2013, 40(2), 1341-1350. [63] Blume B, Grierson D.Expression of acc oxidase promoter-gus fusions in tomato and nicotiana plumbaginifolia regulated by developmental and environmental stimuli[J]. Plant Journal, 1997, 12(4):731-746. [64] Barry CS, Blume B, Bouzayen M, et al.Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato[J]. Plant Journal, 1996, 9(4):525-535. [65] 孙申申, 温秀萍, 杨菲颖, 等. ‘云香’水仙ACC氧化酶基因克隆及遗传转化[J]. 园艺学报, 2017, 44(7), 1388-1396. [66] 孙申申, 温秀萍, 陈晓静. ‘云香’水仙ACC氧化酶基因的克隆表达分析及其遗传转化与鉴定[J]. 西北植物学报, 2017, 37(9):1685-1692. [67] Sornchai P, Koto R, Burns P, et al.Genetic transformation of dendrobium ‘Sonia Earsakul’ with antisense Carica papaya ACO1 gene[J]. Modern Applied Science, 2015, 9(12):125-133. [68] 吴晓庆, 谭华山, 张静静, 等. 根瘤农杆菌介导ACO基因转化延长石竹花期的研究[J]. 华中农业大学学报, 2015, 34(6):21-26. [69] 张树珍, 汤火龙, 杨本鹏, 等. 康乃馨ACC氧化酶反义基因遗传转化康乃馨的研究[J]. 园艺学报, 2003, 30(6):699-702. [70] 徐倩, 殷学仁, 陈昆松. 基于乙烯受体下游转录因子的果实品质调控机制研究进展[J]. 园艺学报, 2014, 41(9):1913-1923. [71] 殷学仁, 张波, 李鲜, 等. 乙烯信号转导与果实成熟衰老的研究进展[J]. 园艺学报, 2009, 36(1):133-140. [72] Wen CK.Ethylene in plants[M]. Berlin, Germany:Springer Netherlands, 2015. [73] Shakeel SN, Wang X, Binder BM, et al.Mechanisms of signal transduction by ethylene:overlapping and non-overlapping signalling roles in a receptor family[J]. AoB Plants, 2013, 5:1-16. [74] Hua J, Meyerowitz EM.Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana[J]. Cell, 1998, 94(2):261-271. [75] Alonso JM, Stepanova AN, Solano R, et al.Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis[J]. Proc Natl Acad Sci USA, 2003, 100(5):2992-2997. [76] Sakai H, Hua J, Chen QG, et al.Etr2 is an etr1-like gene involved in ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 1998, 95(10):5812-5817. [77] Binder BM, Rodríguez FI, Bleecker AB.The copper transporter ran1 is essential for biogenesis of ethylene receptors in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285(48):37263-37270. [78] Resnick JS, Rivarola M, Chang C.Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis[J]. Plant Journal, 2010, 56(3):423-431. [79] 刘茜, 谢芳, 邱莉萍, 等. 乙烯受体差异性协作与raf-like蛋白ctr1负调控的乙烯信号转导[J]. 中国科学:生命科学, 2013, 43(12):1054-1064. [80] 张弢, 董春海. 乙烯信号转导及其在植物逆境响应中的作用. 生物技术通报, 2016, 32(10):11-17. [81] Ju C, Yoon GM, Shemansky JM, et al.Ctr1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the er membrane to the nucleus in Arabidopsis[J]. Proc Natl Acad Sci USA, 2012, 109(47):19486-19491. [82] Qiao H, Shen ZX, Huang SC, et al.Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas[J]. Science, 2012, 338(6105):390-393. [83] Kieber JJ, Rothenberg M, Roman G, et al.Ctr1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases[J]. Cell, 1993, 72(3):427-441. [84] Bisson MM, Groth G.New insight in ethylene signaling:autokinase activity of etr1 modulates the interaction of receptors and ein2[J]. Molecular Plant, 2010, 3(5):882-889. [85] Yoo SD, Cho YH, Tena G, et al.Dual control of nuclear ein3 by bifurcate mapk cascades in c2h4 signalling[J]. Nature, 2008, 451(7180):789-795. [86] Qiao H, Chang KN, Yazaki J, et al.Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis[J]. Genes & Development, 2009, 23(4):512-521. [87] 张存立, 郭红卫. 乙烯信号转导通路研究[J]. 自然杂志, 2012, 34(4):219-228. [88] Alonso JM. Hirayama T, Roman G, et al.EIN2, a Bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science, 1999, 284(5423):2148-2152. [89] 李文阳, 马梦迪, 郭红卫. 植物激素乙烯作用机制的最新进展[J]. 中国科学:生命科学, 2013, 43(10):854-863. [90] Li W, Ma M, Feng Y, et al.Ein2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163(3):670-683. [91] Chao Q, Rothenberg M, Solano R, et al.Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ethylene-insensitive3 and related proteins[J]. Cell, 1997, 89(7):1133-1144. [92] 王彦杰, 张超, 王晓庆, 等. 高等植物EIN3/EILs转录因子研究进展[J]. 生物技术通报, 2012(3):1-8. [93] Solano R, Stepanova A, Chao Q, et al.Nuclear events in ethylene signaling:a transcriptional cascade mediated by ethylene-insensitive3 and ethylene-response-factor1[J]. Genes & Development, 1998, 12(23):3703-3714. [94] An FY, Zhao Q, Ji Y, et al.Ethylene-induced stabilization of ethylene insensitive3 and ein3-like1 is mediated by proteasomal degradation of ein3 binding f-box 1 and 2 that requires ein2 in Arabidopsis[J]. The Plant Cell, 2010, 22(7):2384-2401. [95] 高浩, 竺锡武. ERF转录因子研究进展[J]. 现代农业科技, 2017(8):130-131, 134. [96] 刘建光, 王永强, 张寒霜, 等. ERF转录因子在植物抗逆境胁迫的研究进展[J]. 华北农学报, 2013, 28(增刊1):214-218. [97] Bolt S, Zuther E, Zintl S, et al.ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation[J]. Plant Cell & Environment, 2017, 40(1):108-120. [98] 任昂彦, 孔英珍. 普通烟草ERF转录因子亚家族成员鉴定及表达模式分析[J]. 中国烟草科学, 2017, 38(1):15-22. [99] 吴凡, 张超, 郭加, 等. 牡丹切花ERF转录因子基因的分离与表达分析[J]. 园艺学报, 2016, 43(1):109-120. [100] Xiao YY, Chen JY, Kuang JF, et al.Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes[J]. Journal of Experimental Botany, 2013, 64(8):2499-2510. [101] Klee HJ.Ethylene signal transduction. moving beyond Arabidopsis[J]. Plant Physiology, 2004, 135(2):660-667. [102] 罗江会, 马婧, 刘道凤, 等. 乙烯对蜡梅切花开放衰老及乙烯受体基因表达的影响[J]. 植物生理学报, 2015, 51(2):253-258. [103] 田晓岩, 杨翠萍, 胡进, 等. 文心兰OnERS1全长基因克隆及表达分析[J]. 分子植物育种, 2017, 15(4):1265-1272. [104] Chen SY, Tsai HC, Raghu R, et al.Cdna cloning and functional characterization of ethylene insensitive 3 orthologs from oncidium gower ramsey involved in flower cutting and pollinia cap dislodgement[J]. Plant Physiol Biochem, 2011, 49(10):1209-1219. [105] Liu J, Li J, Wang H, et al.Identification and expression analysis of erf transcription factor genes in petunia during flower senescence and in response to hormone treatments[J]. Journal of Experimental Botany, 2011, 62(2):825-840. [106] 杨晓霞. 乙烯在印度南瓜(Cucurbita maxima)花发育中的作用机制研究[D]. 哈尔滨:东北农业大学, 2015. [107] 刘春森. 拟南芥AtCIPKL在乙烯合成中的功能分析[D]. 武汉:华中师范大学, 2015. [108] Chen WH, Li PF, Chen MK, et al.Forever young flower negatively regulates ethylene response dna-binding factors by activating an ethylene-responsive factor to control Arabidopsis floral organ senescence and abscission[J]. Plant Physiology, 2015, 168(4):1666-1683. [109] Chen MK, Hsu WH, Lee PF, et al.The mads box gene, forever young flower, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis[J]. The Plant Journal, 2011, 68(1):168-185. [110] Chen MK, Lee PF, Yang CH.Delay of flower senescence and abscission in Arabidopsis transformed with an forever young flower homolog from Oncidium orchid[J]. Plant Signaling & Behavior, 2011, 6(11):1841-1843. [111] Jing Y, Chang XX, Kasuga T, et al.A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia[J]. Horticulture Research, 2015, 2(15059):1-9. [112] Shi J, Habben JE, Archibald RL, et al.Overexpression of argos genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize[J]. Plant Physiology, 2015, 169(1):266-282. [113] Leivar P, Monte E.Pifs:systems integrators in plant development[J]. The Plant Cell, 2014, 26(1):56-78. [114] Zhong SW, Shi H, Xue C, et al.A molecular framework of light-controlled phytohormone action in Arabidopsis[J]. Current Biology, 2012, 22(16):1530-1535. [115] Khanna R, Shen Y, Marion CM, et al.The basic helix-loop-helix transcription factor pif5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms[J]. The Plant Cell, 2007, 19(12):3915-3929. |
[1] | CHEN Hu, YANG Zhang-qi, SUN Shuang, LI Peng, XU Hui-lan. Expressions and of Genes Response to Signal Substances in MAPK Cascade Pathway Genes in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(6): 187-197. |
[2] | WANG Lu-lu, GENG Xing-min, XU Shi-da. Ethylene Receptor in Fruit Ripening and Flower Senescence [J]. Biotechnology Bulletin, 2021, 37(3): 144-152. |
[3] | DONG Wei-peng, WANG Jun-shi, ZHANG Shao-hua, YAN Jiong. Research Progress of CRISPR System and Its Application in Mice [J]. Biotechnology Bulletin, 2018, 34(5): 57-63. |
[4] | TIAN Xiao-ming, YAN Li-hong, XIANG Guang-feng, JIANG Li-yuan. Research Progress on 4-Coumarate:Coenzyme A Ligase(4CL)in Plants [J]. Biotechnology Bulletin, 2017, 33(4): 19-26. |
[5] | LI San-he, ZHA Wen-jun, CHEN Zhi-jun, ZHOU Lei, LIU Kai, YOU Ai-qing. Preliminary Study on Physiological Function of Gene Bph14 in Rice [J]. Biotechnology Bulletin, 2017, 33(12): 93-98. |
[6] | CHEN Zhen-zhu, LI Rui, TIAN Fei ,SHEN Yan-ting, GE Qin-yu. Research Progress on miRNA Detection Techniques with High Sensitivity and High Selectivity [J]. Biotechnology Bulletin, 2016, 32(4): 39-47. |
[7] | WANG Yi-bin, ZHANG Ai-jun, LIU Fang-ming, ZHENG Zhou, MIAO Jin-lai. Advances in Studies on the Acclimation of Antarctic Ice Microalgae to Extreme Environments [J]. Biotechnology Bulletin, 2016, 32(10): 128-134. |
[8] | Wang Wei, Zhang Yujuan, Chen Jie, Liu Jubo, Xia Minxuan, Shen Fafu. Research Progress of MicroRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2015, 31(1): 1-10. |
[9] | Qin Yu’e Liu Chaoqi. Progress of miRNA Regulation for Nrf2 and Related Antioxidant Genes [J]. Biotechnology Bulletin, 2013, 0(9): 34-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||