Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (2): 9-16.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1224
Previous Articles Next Articles
YANG Li-jie, ZENG Xiang-fang, QIAO Shi-yan
Received:
2019-12-17
Online:
2020-02-26
Published:
2020-02-23
YANG Li-jie, ZENG Xiang-fang, QIAO Shi-yan. Research Advances on Non-starch Polysaccharide in the Regulation of Intestinal Microflora in Pigs[J]. Biotechnology Bulletin, 2020, 36(2): 9-16.
[1] Wu X, Chen D, Yu B, et al.Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs[J]. Nutrition, 2018, 51(6):20-28. [2] Ginting N, Pase E.Effect of incubation time of sago(metroxylon sago)waste by local microorganism“ginta”on ph, crude protein, and crude fiber content[C]// IOP Conference Series:Earth and Enviro-nmental Science, 2018. [3] 郝帅帅. 高米糠日粮对苏淮猪生产性能、血液指标及肉质性状的影响[D]. 南京:南京农业大学, 2016. [4] 王志博, 陆东东, 倪冬姣, 等. 纤维对猪的营养和肠道健康的影响[J]. 国外畜牧学, 2018, 38(6):93-96. [5] 张奇, 姜海龙, 杨海天, 等. 饲粮纤维对猪消化生理功能的影响研究进展[J]. 饲料研究, 2019, (5):37-40. [6] Patience JF, Petry AL.Susceptibility of fibre to exogenous carbohy-drases and impact on performance in swine[M]//The value of fibre:Engaging the second brain for animal nutrition. Wageningen Academic Publishers, 2019:689-695. [7] 乔岩瑞. 纤维性非淀粉多糖在单胃动物营养中的作用[J]. 饲料工业, 1995(9):11-15. [8] 黄庆华. 猪饲料中非淀粉多糖组分的测定方法及其对能量消化率的影响研究[D]. 北京:中国农业科学院, 2015. [9] Williams BA, Verstegen MWA, Tamminga S.Fermentation in the large intestine of single-stomached animals and its relationship to animal health[J]. Nutrition Research Reviews, 2002, 14(2):207-228. [10] Jha R, Berrocoso JD.Review:Dietary fiber utilization and its effects on physiological functions and gut health of swine[J]. Animal, 2015, 9(9):1441-1452. [11] Koistinen VM, Olli K, Borewicz K, et al.Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation[J]. Microbiome, 2019, 7(1):103-116. [12] Mateos GG, Martín F, Latorre MA, et al.Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice[J]. Animal Science, 2006, 82(1):57-63. [13] Verstegen MWA, Williams BA.Alternatives to the use of antibiotics as growth promoters for monogastric animals[J]. Animal Biotechnology, 2002, 13(1):113-127. [14] Rubin R.High-fiber diet might protect against range of conditions[J]. JAMA, 2019, 321(17):1653-1655. [15] Molist F, Van OM, Pérez JF, et al.Relevance of functional properties of dietary fibre in diets for weanling pigs[J]. Animal Feed Science and Technology, 2014, 189:1-10. [16] Hamaker BR, Tuncil YE.A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota[J]. Journal of Molecular Biology, 2014, 426(23):3838-3850. [17] 郭元晟, 靳鹏. 发酵乳酸杆菌对肉鸡血清抗氧化性能及肠道挥发性脂肪酸(VFA)的影响[J]. 畜牧与饲料科学, 2016, 37(2):10-13. [18] 向兴, 唐行模, 刘艺, 等. 非淀粉多糖酶在猪上的应用研究进展[J]. 今日养猪业, 2019(3):94-97. [19] Engberg RM, Hammersh JM, Johansen NF, et al.Fermented feed for laying hens:effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora[J]. British Poultry Science, 2009, 50(2):228-239. [20] Niba AT, Beal JD, Kudi AC, et al.Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry[J]. African Journal of Biotechnology, 2009, 8(9):1758-1767. [21] 刘志云, 钟晓霞, 谢跃伟, 等. 发酵玉米-豆粕型全价饲料对生长猪生长性能、粪便臭味物质和菌群区系的影响[J]. 畜牧兽医学报, 2018, 49(6):1169-1177. [22] Asp NG.Dietary carbohydrates:classification by chemistry and physiology[J]. Food Chemistry, 1996, 57(1):9-14. [23] Choct M, Dersjant-Li Y, et al.Soy oligosaccharides and soluble non-starch polysaccharides:a review of digestion, nutritive and anti-nutritive effects in pigs and poultry[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(10):1386-1398. [24] Just A, JoséA FJ, Rgensen H. The net energy value of diets for growth in pigs in relation to the fermentative processes in the digestive tract and the site of absorption of the nutrients[J]. Livestock Production Science, 1983, 10(2):171-186. [25] Bourquin LD, Titgemeyer EC, Fahey GC.Vegetable fiber fermentation by human fecal bacteria:cell wall polysaccharide disappearance and short-chain fatty acid production during in vitro fermentation and water-holding capacity of unfermented residues[J]. Journal of Nutrition, 1993, 123(5):860-869. [26] Englyst KN, Liu S, Englyst HN.Nutritional characterization and measurement of dietary carbohydrates[J]. European Journal of Clinical Nutrition, 2007, 12(61):19-39. [27] 汪海峰, 朱军莉, 刘建新. 日粮纤维对猪饲料能值评定的影响[J]. 中国畜牧杂志, 2006, 42(23):45-47. [28] Varel VH.Activity of fiber-degrading microorganisms in the pig large intestine[J]. Journal of Animal Science, 1987, 65(2):488-496. [29] Ashida H, Ogawa M, Kim M, et al.Bacteria and host interactions in the gut epithelial barrier[J]. Nature Chemical Biology, 2011, 8(1):36-45. [30] Tilg H, Kaser A.Gut microbiome, obesity, and metabolic dysfunction[J]. The Journal of Clinical Investigation, 2011, 121(6):2126-2132. [31] Walter P, Ron D.The unfolded protein response:from stress pa-thway to homeostatic regulation[J]. Science, 2011, 334(6059):1081-1086. [32] Wong JMW, De Souza R, Kendall CWC, et al.Colonic health:fermentation and short chain fatty acids[J]. Journal of Clinical Gastroenterology, 2006, 40(3):235-243. [33] Elia M, Cummings JH.Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates[J]. European Journal of Clinical Nutrition, 2007, 12(61):40-74. [34] Koh A, DeVadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345. [35] Cummings JH, Macfarlane GT.The control and consequences of bacterial fermentation in the human colon[J]. Journal of Applied Bacteriology, 1991, 70(6):443-459. [36] Cummings JH, Macfarlane GT, Englyst HN.Prebiotic digestion and fermentation[J]. The American Journal of Clinical Nutrition, 2001, 73(2):415-420. [37] Topping DL, Clifton PM.Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides[J]. Physiological Reviews, 2001, 81(3):1031-1064. [38] Nie Y, Lin Q, Luo F.Effects of non-starch polysaccharides on inflammatory bowel disease[J]. International Journal of Molecular Sciences, 2017, 18(7):1372. [39] 王金全, 蔡辉益, 等. 小麦日粮NSP和木聚糖酶对肉仔鸡肠道微生物区系的影响[J]. 饲料工业, 2004, 25(8):15-19. [40] 贺永惠, 王清华, 等. 小麦可溶性非淀粉多糖对大鼠肠道形态与功能的影响[J]. 饲料工业, 2010, 31(17):13-15. [41] Bao YM, Choct M.Dietary NSP nutrition and intestinal immune system for broiler chickens[J]. World’s Poultry Science Journal, 2010, 66(3):511-518. [42] Savory CJ.Enzyme supplementation, degradation and metabolism of three U-14 C-labelled cell-wall substrates in the fowl[J]. British Journal of Nutrition, 1992, 67(1):91-102. [43] Gibson GR, Willems A, Reading S, et al.Fermentation of non-digestible oligosaccharides by human colonic bacteria[J]. Proceedings of the Nutrition Society, 1996, 55(3):899-912. [44] Hillman K.Manipulation of the intestinal microflora for improved health and growth in pigs[J]. Proceedings of the UK Branch of World’s Poultry Science Association, Scarborough, UK, 1999:59-61. [45] Youngblut ND, Reischer GH, Walters W, et al.Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades[J]. Nature Communications, 2019, 10(1):2200-2214. [46] Pluske JR, Kim JC, McDonald DE, et al. Non-starch polysacchar-ides in the diets of young weaned piglets[J]. The Weaner Pig:Nutrition and Management, 2001, (1):81-112. [47] Knudsen KEB, Hedemann MS, Lrke HN.The role of carbohydrates in intestinal health of pigs[J]. Animal Feed Science and Technology, 2012, 173(1-2):41-53. [48] 吴维达, 解竞静, 张宏福. 不同日粮纤维对生长猪养分消化率和肠道结构形态的影响[J]. 畜牧与兽医, 2016, 48(6):57-60. [49] Stephen AM, Champ MMJ, Cloran SJ, et al.Dietary fibre in europe:current state of knowledge on definitions, sources, recommendations, intakes and relationships to health[J]. Nutrition Research Reviews, 2017, 30(2):149-190. [50] McRorie JJW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1:What to look for and how to recommend an effective fiber therapy[J]. Nutrition Today, 2015, 50(2):82. [51] Elleuch M, Bedigian D, Roiseux O, et al.Dietary fibre and fibre-rich by-products of food processing:Characterisation, technological functionality and commercial applications:A review[J]. Food Chemistry, 2011, 124(2):411-421. [52] Dhingra D, Michael M, Rajput H, et al.Dietary fibre in foods:a review[J]. Journal of Food Science and Technology, 2012, 49(3):255-266. [53] Kyogashima M, Ginsburg V, Krivan HC.Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl-GM3 found in piglet small intestine[J]. Archives of Biochemistry and Biophysics, 1989, 270(1):391-397. [54] 张文俊, 贺建华. 仔猪肠道微生态环境的调控[J]. 动物营养学报, 2010, 22(5), 1181-1185. [55] Freire JPB, Guerreiro AJG, Cunha LF, et al.Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet[J]. Animal Feed Science and Technology, 2000, 87(1-2):71-83. [56] Malkki Y.Physical properties of dietary fiber as keys to physiological functions[J]. Cereal Foods World, 2001, 46(5):196-199. [57] Scala J.The physiological effects of dietary fiber[M]. American Chemical Society, 1975. [58] Chen H, Mao X, et al.Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets [J]. British Journal of Nutrition, 2013, 110(10):1837-1848. [59] Chen H, Mao XB, Che LQ, et al.Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs[J]. Animal Feed Science and Technology, 2014, 195(9):101-111. [60] 于藏游. 不同纤维原料非淀粉多糖组分的测定及其对断奶仔猪生长性能、消化率和粪中菌群的影响[D]. 北京:中国农业大学, 2015. [61] Karr-Lilienthal LK, Kadzere CT, Grieshop CM, et al.Chemical and nutritional properties of soybean carbohydrates as related to nonruminants:A review[J]. Livestock Production Science, 2005, 97(1):1-12. [62] Moore WE, Moore LV, Cato EP, et al.Effect of high-fiber and high-oil diets on the fecal flora of swine[J]. Appl Environ Microbiol, 1987, 53(7):1638-1644. [63] Angkanaporn K, Choct M, Bryden WL, et al.Effects of wheat pentosans on endogenous amino acid losses in chickens[J]. Journal of the Science of Food and Agriculture, 1994, 66(3):399-404. [64] Choct M, Hughes RJ, Wang J, et al.Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens[J]. British Poultry Science, 1996, 37(3):609-621. [65] O’Grady J, O’Connor EM, Shanahan F. Dietary fibre in the era of microbiome science[J]. Alimentary Pharmacology & Therapeutics, 2019, 49(5):506-515. [66] 龚敏. 小麦非淀粉多糖对断奶仔猪肠道菌群区系及糖转运载体的影响研究[D]. 南昌:南昌大学, 2011. [67] 高阳, 周虚, 于佳鑫, 等. 非淀粉多糖酶对生长育肥猪生长性能、胴体性状和肉品质的影响[J]. 中国兽医学报, 2014(5):138-142. [68] Varel VH, Pond WG, Pekas JC, et al.Influence of high-fiber diet on bacterial populations in intestinal tracts of obese and lean genotype pigs[J]. Applied and Environmental Microbiology, 1982, 44(1):107-112. [69] Castillo M, Martín-Orúe SM, Anguita M, et al.Adaptation of gut microbiota to corn physical structure and different types of dietary fibre[J]. Livestock Science, 2007, 109(1-3):149-152. [70] 苗德武. 初产母猪产死胎原因及防范[J]. 四川畜牧兽医, 2018(1):54-55. [71] 王小伟, 陈庆莲, 等. 饲粮中添加天然木质纤维和NCG对妊娠母猪繁殖性能的影响[J]. 饲料研究, 2019(8):21-25. [72] 刘红宾. 母猪微生物垂直传递影响仔猪肠道的微生物定植与功能发育[D]. 北京:中国农业大学, 2018. [73] Sonnenburg ED, Smits SA, Tikhonov M, et al.Diet-induced extinctions in the gut microbiota compound over generations[J]. Nature, 2016, 529(7585):212. [74] Ng KM, Aranda-Díaz A, Tropini C, et al.Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs[J]. Cell Host & Microbe, 2019, 26(5), 650-665. |
[1] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[2] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[3] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[4] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[5] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[6] | WANG Song, JIAN Xiao-ping, PAN Wan-shu, ZHANG Yong-guang, WANG Tao, YOU Ling. Effects of Fermented Corn Xiaoqu Distiller's Grains Feed on the Intestinal Microbiota of Growing-Finishing Pigs [J]. Biotechnology Bulletin, 2022, 38(9): 248-257. |
[7] | XUE Man-de, ZHAO Feng-yue, LI Jie, JIANG Dan-hua. Advances in Histone Variants in Plant Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 1-12. |
[8] | LI Bai, CAI Zhi-jun, WANG Lei, CHEN Jie, CAO Kui-rong, LI Jun, CHONG Gao-jun. Development and Application of the Combinatorial Marker for the Rice Blast Resistance Gene Pigm [J]. Biotechnology Bulletin, 2022, 38(7): 153-159. |
[9] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
[10] | ZHONG Ming-yue, LIU Chun-yan, YAN Yan, ZHANG Xiao-hui, YUAN Hai-sheng, XU Guo-quan, ZHANG He-ping, WANG Yu-zhen. Improvement Effect of Bifidobacterium lactis V9 on NAFLD Rats Induced by High-fat Diet [J]. Biotechnology Bulletin, 2022, 38(3): 181-187. |
[11] | LIU Yuan-yuan, YANG Dong-jie, ZUO Dong-yun, CHENG Hai-liang, ZHANG You-ping, LV Li-min, WANG Qiao-lian, SONG Guo-li. Cloning and Functional Verification of GhD6PKL2 from Gossypium hirsutum [J]. Biotechnology Bulletin, 2021, 37(8): 111-120. |
[12] | QIU Xiao-yu, LIU Zuo-hua, QI Ren-li. Differences in Early Fat Development and Gene Transcription Expression in the Adipose Tissues of Piglets with and Without Gut Microbiota [J]. Biotechnology Bulletin, 2021, 37(5): 56-66. |
[13] | XUE Xiang-lan, DING Yang-yang, LIU Yue, LI Xiao-bo, JIANG Lin, HE Xiao-hong, MA Yue-hui, ZHAO Qian-jun. Research Progress on Biological Function Growth and Development Related to N6-methyladenosine in Mammals [J]. Biotechnology Bulletin, 2021, 37(4): 251-259. |
[14] | ZHANG Jing, XIONG Yan, HUA Yong-lin, GUO Yu, XIONG Xian-rong, ZI Xiang-dong, LI Jian. Screening of Reference Genes for Quantitative PCR of Skeletal Muscle Fiber Types in Mice [J]. Biotechnology Bulletin, 2021, 37(2): 71-79. |
[15] | WU Ya, LIU Yi, SHU Tong, WANG Hui-hui, LI Pan-deng, YANG Ying, YU Long-jiang. Analysis on the Dynamic Process of Bacillus ramie Degumming [J]. Biotechnology Bulletin, 2021, 37(12): 22-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||