Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (8): 162-172.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0141
Previous Articles Next Articles
GONG Wei1, YU Jian-yuan2, ZHANG Xi1, SHAN Xiao-yi1
Received:
2020-02-16
Online:
2020-08-26
Published:
2020-08-27
GONG Wei, YU Jian-yuan, ZHANG Xi, SHAN Xiao-yi. Research Progress on Molecular Mechanisms of Nitrate-regulated Plant Flowering and Yield[J]. Biotechnology Bulletin, 2020, 36(8): 162-172.
[1] Xu G, Fan X, Miller AJ.Plant nitrogen assimilation and use efficiency[J]. Annu Rev Plant Biol, 2012, 63:153-182. [2] Wang YY, Cheng YH, Chen KE, et al.Nitrate transport, signaling, and use efficiency[J]. Annu Rev Plant Biol, 2018, 69:85-122. [3] Lin YL, Tsay YF.Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis[J]. J Exp Bot, 2017, 68:2603-2609. [4] Wang W, Hu B, Li A, et al.NRT1. 1s in plants:functions beyond nitrate transporter[J]. J Exp Bot, 2019, 71(15):4373-4379. [5] Guo FQ, Wang R, Chen M, et al.The Arabidopsis dual-affinity nitrate transporter gene AtNRT1. 1(CHL1)is activated and functions in nascent organ development during vegetative and reproductive growth[J]. Plant Cell, 2001, 13:1761-1777. [6] Gras DE, Vidal EA, Undurraga SF, et al.SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana[J]. J Exp Bot, 2018, 69:619-631. [7] Wang W, Hu B, Yuan D, et al.Expression of the nitrate transporter gene OsNRT1. 1A/OsNPF6. 3 confers high yield and early maturation in rice[J]. Plant Cell, 2018, 30:638-651. [8] Liu KH, Niu Y, Konishi M, et al.Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545:311-316. [9] Marvhive C, Roudier F, Castaings L, et al.Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nat Commun, 2013, 4:1713. [10] Olas JJ, Van DJ, Abel C, et al.Nitrate acts at the Arabidopsis thaliana shoot apical meristem to regulate flowering time[J]. New Phytol, 2019, 223:814-827. [11] Blimel M, Dally N, Jung C.Flowering time regulation in crops-what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol, 2015, 32:121-129. [12] Suarez-Lopez P, Wheatley K, Robson F, et al.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410:1116-1120. [13] Michaels SD, He Y, Scotecci KC, et al.Attenuation of FLOWER-ING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis[J]. Proc Natl Acad Sci USA, 2003, 100:10102-10107. [14] Sung S, Amasino RM.Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3[J]. Nature, 2004, 427:159-164. [15] Michaels SD, Amasino RM.Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization[J]. Plant Cell, 2001, 13:935-941. [16] Mutasa-Gottgens E, Hedden P.Gibberellin as a factor in floral regulatory networks[J]. J Exp Bot, 2009, 60:1979-1989. [17] Srikanth A, Schmid M.Regulation of flowering time:all roads lead to Rome[J]. Cell Mol Life Sci, 2011, 68:2013-2037. [18] Marin IC, Loef I, Bartetizo L, et al.Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways[J]. Planta, 2011, 233:539-552. [19] Yuan S, Zhang ZW, Zheng C, et al.Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering[J]. Proc Natl Acad Sci USA, 2016, 113:7661-7666. [20] Itoh H, Nonoue Y, Yano M, et al.A pair of floral regulators sets critical day length for Hd3a florigen expression in rice[J]. Nat Genet, 2010, 42:635-638. [21] Komiya R, Yokoi S, Shimamito K.A gene network forlong-day flowering activates RFT1 encoding a mobile flowering signal in rice[J]. Development, 2009, 136:3443-3450. [22] Doi K, Izawa T, Fuse T, et al.Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes Dev, 2004, 18:926-936. [23] Li H, Hu B, Chu C.Nitrogen use efficiency in crops:lessons from Arabidopsis and rice[J]. J Exp Bot, 2017, 68:2477-2488. [24] Hu B, Wang W, Ou S, et al.Variation in NRT1. 1B contributes to nitrate-use divergence between rice subspecies[J]. Nat Genet, 2015, 47:834-838. [25] Zhang J, Liu YX, Zhang N, et al.NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nat Biotechnol, 2019, 37:676-684. [26] Fan X, Tang Z, Tan Y, et al.Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proc Natl Acad Sci USA, 2016, 113:7118-7123. [27] Fang Z, Bai G, Huang W, et al.The rice peptide transporter OsNPF7. 3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield[J]. Front Plant Sci, 2017, 8:1338. [28] Yan M, Fan XR, Feng HM, et al.Rice OsNAR2. 1 interacts with OsNRT2. 1, OsNRT2. 2 and OsNRT2. 3a nitrate transporters to provide uptake over high and low concentration ranges[J]. Plant Cell Environ, 2011, 34:1360-1372. [29] Chen JG, Zhang Y, Tan Y, et al.Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2. 1 expression with the OsNAR2. 1 promoter[J]. Plant Biotechnol J, 2016, 14:1705-1715. [30] Chen J, Fan X, Qian K, et al.pOsNAR2. 1:OsNAR2. 1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants[J]. Plant Biotechnol J, 2017, 15:1273-1283. [31] Von W, Neil JJB, Le CH, et al.Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants[J]. BMC Evol Biol, 2014, 14:11. [32] 轩红梅, 王永华, 魏利婷, 等. 小麦幼苗叶片中硝酸盐转运蛋白NRT1和NRT2家族基因对氮饥饿响应的表达分析[J]. 麦类作物学报, 2014, 34:1019-1028. Xuan HM, Wang YH, Wei LT, et al.Transcription analysis of the genes encoding nitrate transporter NRT1 and NRT2 Families in response to starvation in wheat seedling[J]. Journal of Triticeae Crops, 2014, 34:1019-1028. [33] 李文虎, 田汇, 高亚军. 超表达小麦硝态氮转运蛋白基因TaNRT2. 1对拟南芥生长及氮吸收的影响[J]. 植物生理学报, 2018, 54:651-659. Li WH, Tian H, Gao YJ.Influence of over-expressing the wheat nitrate transporter genes TaNRT2.1 on affected the growth and nitrogen uptake of Arabidopsis thaliana[J]. Plant Physiology Journal, 2018, 54 :651-659. [34] Li W, He X, Chen Y, et al.A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal[J]. New Phytol, 2020, 225:1667-1680. [35] Good AG, Shrawat AK, Muench DG.Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production[J]. Trends Plant Sci, 2004, 9:597-605. [36] Moison M, Marmagne A, Dinant S, et al.Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis[J]. J Exp Bot, 2018, 69:4379-4393. [37] Wang Y, Fu B, Pan L, et al.Overexpression of Arabidopsis Dof1, GS1 and GS2 enhanced nitrogen assimilation in transgenic tobacco grown under low-nitrogen conditions[J]. Plant Mol Biol Rep, 2013, 31:886-900. [38] Tabuchi M, Sugiyama K, Ishiyama K, et al.Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1[J]. Plant J, 2005, 42:641-651. [39] Funayama K, Kojima S, Tabuchi-Kobayashi M, et al.Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots[J]. Plant Cell Physiol, 2013, 54:934-943. [40] Brauer EK, Rochon A, Bi YM, et al.Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1[J]. Physiol Plant, 2011, 141:361-372. [41] Tamura W, Kojima S, Toyokama A, et al.Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice[J]. Front Plant Sci, 2011, 2:57. [42] Tamura W, Hidaka Y, Tabuchi M, et al.Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants[J]. Amino Acids, 2010, 39:1003-1012. [43] Yamaya T, Obara M, Nakajima H, et al.Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice[J]. J Exp Bot, 2002, 53:917-925. [44] Martin A, Lee J, Kichey T, et al.Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production[J]. Plant Cell, 2006, 18:3252-3274. [45] Li XP, Zhao XQ, He X, et al.Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use- and yield-related traits in bread wheat[J]. New Phytol, 2011, 189:449-458. [46] Hu M, Zhao X, Liu Q, et al.Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat[J]. Plant Biotechnol J, 2018, 16:1858-1867. [47] Urriola J, Rathore KS.Overexpression of a glutamine synthetase gene affects growth and development in sorghum[J]. Transgenic Res, 2015, 24:397-407. [48] Vincent R, Fraisier V, Chaillou, S, et al.Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development[J]. Planta, 1997, 201:424-433. [49] Ortega JL, Temple SJ, Sengupta-Gopalan C.Constitutive overexpr-ession of cytosolic glutamine synthetase(GS1)gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover[J]. Plant Physiol, 2001, 126:109-121. [50] Iwamotol M, Tagiri A.MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice[J]. Plant J, 2016, 85:466-477. [51] Iwamoto M, Higo, K, Takano M. Circadian clock- and phytochrome-regulated Dof-like gene, Rdd1, is associated with grain size in rice[J]. Plant Cell Environ, 2009, 32:592-603. [52] Pena PA, Quach T, Sato S, et al.Expression of the maize Dof1 transcription factor in wheat and sorghum[J]. Front Plant Sci, 2017, 8:434. [53] Yanagisaw AS, Akiyama A, Kisaka H, et al.Metabolic engineering with Dof1 transcription factor in plants:improved nitrogen assimilation and growth under low-nitrogen conditions[J]. Proc Natl Acad Sci USA, 2004, 101:7833-7838. [54] Kurai T, Wakayama M, Abiko T, et al.Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions[J]. Plant Biotechnol J, 2011, 9:826-837. [55] He X, Qu B, Li W, et al.The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield[J]. Plant Physiol, 2015, 169:1991-2005. [56] Qu B, He X, Wang J, et al.A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input[J]. Plant Physiol, 2015, 167:411-423. [57] Yang J, Wang M, Li W, et al.Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat[J]. Plant Biotechnol J, 2019, 17:1823-1833. |
[1] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[2] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[3] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[4] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[5] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[6] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[7] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[8] | ZHAO Sai-sai, ZHANG Xiao-dan, JIA Xiao-yan, TAO Da-wei, LIU Ke-yu, NING Xi-bin. Investigation on the Complex Mutagenesis Selection of High-yield Nitrate Reductase Strain Staphylococcus simulans ZSJ6 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2023, 39(4): 103-113. |
[9] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[10] | HOU Rui-ze BAO Yue CHEN Qi-liang MAO Gui-ling WEI Bo-lin HOU Lei-ping LI Mei-lan. Cloning,Expression and Functional Identification of PRR5 Gene in Pakchoi [J]. Biotechnology Bulletin, 2023, 39(10): 128-135. |
[11] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[12] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[13] | JIANG Mei-yan, ZHOU Yang, LIU Ren-lang, YAO Fei, YANG Yun-shu, HOU Kai, FENG Dong-ju, WU Wei. Screening and Plant Growth Promoting of Grow-promoting Bacteria in Rhizosphere Bacteria of Angelica dahurica var. formosana [J]. Biotechnology Bulletin, 2022, 38(8): 167-178. |
[14] | LIU Zi-ran, ZHEN Zhen, CHEN Qiang, LI Yue-ying, WANG Ze, PANG Hong-bo. Research Progress in Plant Response to Cd Stress [J]. Biotechnology Bulletin, 2022, 38(6): 13-26. |
[15] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||