Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (9): 100-108.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0936
Previous Articles Next Articles
LIANG Ye, HE Chu-ting, YANG Yue, ZHANG Yu-fen, JIANG Fan
Received:
2020-07-29
Online:
2020-09-26
Published:
2020-09-30
LIANG Ye, HE Chu-ting, YANG Yue, ZHANG Yu-fen, JIANG Fan. Effects of Inoculation of Rhizobacteria Containing ACC Deaminase on Soybean Growth Under Alkaline Stress[J]. Biotechnology Bulletin, 2020, 36(9): 100-108.
[1] Food & Agriculture Organization of the United Nations. Management of salt affected soils.http://www. fao. org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/en/. [2] Wang L, Seki K, Miyazaki T, et al.The cause of soil alkalinization in the Songnen plain of northeast China[J]. Paddy Water Environment, 2009, 7:259-270. [3] Brady NC, Weil RR.The nature and properties of soils[M]. Prentice-Hall Inc, New Jersey, 1996. [4] Marschner H.Mineral nutrition of higher plants[M]. 2nd Edition. London:Academic Press, 1995. [5] Schenk M, Wehrmann J.The influence of ammonia in nutrient solution on growth and metabolism of cucumber plants[J]. Plant Soil, 1979, 52:403-414. [6] Guo R, Shi LX, Yan CR, et al.Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize(Zea mays L.)seedlings[J]. BMC Plant Biology, 2017, 17:4. [7] Zhang H, Liu XL, Zhang RX, et al.Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice(Oryza sativa L.)[J]. Frontiers in Plant Science, 2017, 8:1580. [8] Higuchi K, Ono K, Araki S, et al.Elongation of barley roots in high pH nutrient solution is supported by both cell proliferation and differentiation in the root apex[J]. Plant Cell and Environment, 2017, 40:1609-1617. [9] Chen H, Zhang Q, Cai H, et al.Ethylene mediates alkaline-induced rice growth inhibition by negatively regulating plasma membrane H+-ATPase activity in roots[J]. Frontier Plant Science, 2017, 8:1839. [10] Haas D, Defago G.Biological control of soil-borne pathogens by Fluorescent Pseudomonads[J]. Nature Reviews Microbiology[J]. 2005, 3(4):307-319. [11] Bhattacharyya PN, Jha DK.Plant growth-promoting rhizobacteria(PGPR):emergence in agriculture[J]. World J Microbiol Biotechnol, 2012, 28:1327-1350. [12] Nadeem SM, Ahmad M, Zahir ZA, et al.The role of mycorrhizae and plant growth promoting rhizobacteria(PGPR)in improving crop productivity under stressful environments[J]. Biotechnology Advances, 2014, 32:429-448. [13] Tabassum B, Khan A, Tariq M, et al.Bottlenecks in commercialisation and future prospects of PGPR[J]. Applied Soil Ecology, 2017, 121:102-117. [14] Etesamia H, Maheshwarib DK.Use of plant growth promoting rhizobacteria(PGPRs)with multiple plant growth promoting traits in stress agriculture:Action mechanisms and future prospects[J]. Ecotoxi Environ Safety, 2018, 156:225-246. [15] Glick BR, Penrose DM, Li JA. model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria[J]. Journal of Theoretical Biology, 1998, 190(1):63-68. [16] Glick BR.Bacteria with ACC deaminase can promote plant growth and help to feed the world[J]. Microb Res, 2014, 169:30-39. [17] Li J, Xu HH, Liu WC, et al.Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation[J]. Plant Physiology, 2015, 168(4):1777-1791. [18] Qi XP, Li MW, Xie M, et al.Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing[J]. Nature Communication, 2014, 5:43-40. [19] Zhang J, Yang DS, Li MX, et al.Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress[J]. PLoS One, 2016, 11(7):0159627. [20] Li M, Guo R, Jiao Y, et al.Comparison of salt tolerance in soja based on metabolomics of seedling roots[J]. Frontier Plant Science, 2017, 8:1101. [21] Yu Y, Liu A, Duan XB, et al.GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis[J]. Planta, 2016, 244:681-698. [22] Jia BW, Sun MZ, DuanMu HZ, et al. GsCHX19. 3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance[J]. Scientific Reports, 2017, 7:9423. [23] Song XW, Duamu HZ, Yu Y, et al.GsJ11, identified by genome-wide analysis, facilitates alkaline tolerance in transgenic plants[J]. Plant Cell, Tissue and Organ Culture, 2017, 129:411-430. [24] Satola B, Wübbeler JH, Steinbüchel A.Metabolic characteristics of the species Variovorax paradoxus[J]. Applied Microbiol Biotech, 2013, 97:541-560. [25] Han JI, Choi HK, Lee SW, et al.Complete genome sequence of the metabolically versatile plant growth promoting endophyte Variovorax paradoxus S110[J]. Journal of Bacteriol, 2011, 193:1183-1190. [26] Belimov AA, Hontzeas N, Safronova VI, et al.Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard(Brassica juncea L. Czern. )[J]. Soil Biology Biochemistry, 2005, 37:241-250. [27] Bhattacharyya C, Bakshi U, Mallick I, et al.Genome-guided insights into the plant growth promotion capabilities of the physiologically versatile Bacillus aryabhattai strain AB211[J]. Frontiers Microbiol, 2017, 8:411. [28] Teijeiro RG, Belimov AA, Dodd IC.Microbial inoculum development for ameliorating crop drought stress:A case study of Variovorax paradoxus 5C-2[J]. New Biotechnology, 2020, 56:103-113. [29] Jiang F, Chen L, Belimov AA, et al.Multiple impacts of the plant growth promoting rhizobacterium Variovorax paradoxus 5C- 2 on nutrient and ABA relations of Pisum sativum[J]. J Exp Bot, 2012, 63(18):6421-6430. [30] Wang QY, Dodd IC, Belimov AA, et al.Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation[J]. Functional Plant Biology, 2016, 43:161-172. [31] 刘宁, 刘全儒, 姜帆, 于明. 植物生物学实验指导[M]. 北京:高等教育出版社, 2016. Liu N, Liu QR, Jiang F, Yu M.Experimental guidance of plant biology[M]. Beijing:Higher Education Press, 2016. [32] Staal M, de Cnodder T, Simon D, et al. Apoplastic alkalinization is instrumental for the inhibition of cell elongation in the Arabidopsis root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid[J]. Plant Physiology, 2011, 155:2049-2055. [33] Street IH, Aman S, Zubo Y, et al.Ethylene inhibits cell proliferation of the Arabidopsis root meristem[J]. Plant Physiology, 2015, 169:338-350. [34] Pružinská A, Tanner G, Anders I, et al.Chlorophyll breakdown:Pheophorbide a oxygenase is a rieske-type iron-sulfut protein, encoded by the accelerated cell death 1 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100:15259-15264. [35] Xu Y, Huang BR.Effects of folar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance[J]. Crop Science, 2009, 49:1876-1884. [36] Chen Y, Cothren JT, Chen DH, et al.Ethylene-inhibiting compound 1-MCP delays leaf senescence in cotton plants under abiotic stress conditions[J]. Journal of Integrative Agriculture, 2015, 14(7):1321-1331. [37] Jespersen D, Yu JJ, Huang B.Metabolite responses to exogenous application of nitrogen, cytokinin, and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass[J]. PLoS One, 2015, 10(3):1-19. [38] Yuan C, Cothren JT, De-Hua C, et al.Ethylene-inhibiting compound 1-MCP delays leaf senescence in cotton plants under abiotic stress conditions[J]. Journal of Agricultural Sciences, 2015, 14(7):1321-1331. [39] Yin XR, Xie XL, Xia XJ, et al.Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening[J]. Plant Journal, 2016, 86(5):403-412. [40] Li YS, Mao XT, Tian QY, et al.Phosphorus deficiency induced reduction in root hydraulic conductivity in Medicago falcate is associated with ethylene production[J]. Environmental and Experimental Botany, 2009, 67(1):172-177. [41] Groppa MD, Benavides MP, Zawoznik MS.Root hydraulic conductance, aquaporins and plant growth promoting microorganisms:a revision[J]. Applied Soil Ecology, 2012, 61:247-254. |
[1] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[2] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[3] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[4] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[5] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[6] | CHEN Yi-bo, YANG Wan-ming, YUE Ai-qin, WANG Li-xiang, DU Wei-jun, WANG Min. Construction of Soybean Genetic Map Based on SLAF Markers and QTL Mapping Analysis of Salt Tolerance at Seedling Stage [J]. Biotechnology Bulletin, 2023, 39(2): 70-79. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | BAI Miao, TIAN Wen-qing, WU Shuai, WANG Min, WANG Li-xiang, YUE Ai-qin, NIU Jing-ping, ZHANG Yong-po, GAO Chun-yan, ZHANG Wu-xia, GUO Shu-jin, DU Wei-jun, ZHAO Jin-zhong. Effects of Hormonal and Adversely Stress on Vitamin E and γ-TMT Gene Expression in Soybeans [J]. Biotechnology Bulletin, 2023, 39(10): 148-162. |
[9] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[10] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
[11] | SHI Guang-cheng, YANG Wan-ming, DU Wei-jun, WANG Min. Screening of Salt-tolerant Soybean Germplasm and Physiological Characteristics Analysis of Its Salt Tolerance [J]. Biotechnology Bulletin, 2022, 38(4): 174-183. |
[12] | GAO Ya-hui, JIANG Ming-guo, FENG Jing, ZHOU Gui. Screening of Potential PGPR Strains Producting Growth-promoting Volatile Compounds and Study on Their Growth-promoting Characteristics [J]. Biotechnology Bulletin, 2022, 38(3): 103-112. |
[13] | FAN Ya-peng, RUI Cun, ZHANG Yue-xin, CHEN Xiu-gui, LU Xu-ke, WANG Shuai, ZHANG Hong, XU Nan, WANG Jing, CHEN Chao, YE Wu-wei. Cloning,Expression and Preliminary Bioinformatics Analysis of the Alkaline Tolerant Gene GhZAT12 in Gossypium hirsutum [J]. Biotechnology Bulletin, 2021, 37(8): 121-130. |
[14] | HAN Shao-jie, ZHENG Jing-wu. Research Advances on the Functional Study of Host Resistance Genes to Heterodera glycines [J]. Biotechnology Bulletin, 2021, 37(7): 14-24. |
[15] | LI Chun-jie, WANG Cong-li. Recognition Mechanism of Plant-parasitic Nematodes in Response to Semiochemicals [J]. Biotechnology Bulletin, 2021, 37(7): 35-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||