Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 105-115.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0282
Previous Articles Next Articles
ZHANG Lin-yi1,2(), SONG Chen3, XU Yao-yao2, WANG Jia-ning2, WANG Jin1, YUE Zheng-bo1, LIU Xiao-ling2()
Received:
2020-03-16
Online:
2020-10-26
Published:
2020-11-02
Contact:
LIU Xiao-ling
E-mail:506739981@qq.com;liuxl@craes.org.cn
ZHANG Lin-yi, SONG Chen, XU Yao-yao, WANG Jia-ning, WANG Jin, YUE Zheng-bo, LIU Xiao-ling. Screening of an Effective Sulfur-oxidizing Strain and Its Main Bio-oxidation Metabolic Pathway of S2-[J]. Biotechnology Bulletin, 2020, 36(10): 105-115.
基因 | 基因功能注释 |
---|---|
cysC | 腺苷酰硫酸激酶 |
sufES | 半胱氨酸脱硫酶 |
sat | 硫酸腺苷酰转移酶 |
cybB | 细胞色素b561 |
nqor | NAD(P)H-泛醌氧化还原酶 |
nuo | NADH-氧化还原酶 |
ato | 琥珀酰基醋酸酯辅酶A转移酶 |
paps | 磷酸腺苷磷酸硫酸还原酶 |
his | 磷酸核糖酸-AMP环化水解酶 |
ast | 芳基硫酸酯磺基转移酶 |
stp | 硫酸盐ABC转运体渗透酶 |
hdrA | 吡啶核苷酸二硫键氧化还原酶 |
yghu/hdrB | 二硫化物氧化还原酶 |
psrB | 4Fe-4S簇结合酶 |
hdrC | 铁硫簇结合蛋白 |
fisR | 转录调节因子 |
suox | 亚硫酸盐氧化酶 |
cysIJ | 亚硫酸盐还原酶 |
thiS | 硫载体蛋白腺苷酸转移酶 |
st | S-转移酶 |
sbp | 硫酸盐转运蛋白 |
cysAUW | 硫酸盐/硫代硫酸盐转运蛋白 |
tetH | 连四硫酸水解酶 |
Dsb/soxW | 硫醇二硫化物互换蛋白 |
trxB | 硫氧还蛋白还原酶 |
trxAC/soxV | 硫氧还蛋白 |
phs/soxZ | 硫代硫酸盐还原酶 |
doxAB | 硫代硫酸盐醌氧化还原酶 |
psr | 转录调节蛋白 |
tst | 硫代硫酸盐-硫转移酶 |
rhd | 硫代硫酸盐-氰化物硫转移酶 |
fcc | 黄素细胞色素c |
grx | 谷氧还蛋白 |
gst | 谷胱甘肽S-转移酶 |
gsr | 谷胱甘肽还原酶 |
gshp | 谷胱甘肽过氧化物酶 |
cydAB | 细胞色素d泛醌氧化酶 |
cyoABCD | 细胞色素o泛醌氧化酶 |
soxAX | 细胞色素c550 |
soxB | 硫酯酶 |
soxC | Mo-co蛋白 |
soxF | 黄素腺嘌呤二核苷酸 |
soxY | 硫代硫酸盐氧化载体蛋白 |
soxX | 细胞色素c |
基因 | 基因功能注释 |
---|---|
cysC | 腺苷酰硫酸激酶 |
sufES | 半胱氨酸脱硫酶 |
sat | 硫酸腺苷酰转移酶 |
cybB | 细胞色素b561 |
nqor | NAD(P)H-泛醌氧化还原酶 |
nuo | NADH-氧化还原酶 |
ato | 琥珀酰基醋酸酯辅酶A转移酶 |
paps | 磷酸腺苷磷酸硫酸还原酶 |
his | 磷酸核糖酸-AMP环化水解酶 |
ast | 芳基硫酸酯磺基转移酶 |
stp | 硫酸盐ABC转运体渗透酶 |
hdrA | 吡啶核苷酸二硫键氧化还原酶 |
yghu/hdrB | 二硫化物氧化还原酶 |
psrB | 4Fe-4S簇结合酶 |
hdrC | 铁硫簇结合蛋白 |
fisR | 转录调节因子 |
suox | 亚硫酸盐氧化酶 |
cysIJ | 亚硫酸盐还原酶 |
thiS | 硫载体蛋白腺苷酸转移酶 |
st | S-转移酶 |
sbp | 硫酸盐转运蛋白 |
cysAUW | 硫酸盐/硫代硫酸盐转运蛋白 |
tetH | 连四硫酸水解酶 |
Dsb/soxW | 硫醇二硫化物互换蛋白 |
trxB | 硫氧还蛋白还原酶 |
trxAC/soxV | 硫氧还蛋白 |
phs/soxZ | 硫代硫酸盐还原酶 |
doxAB | 硫代硫酸盐醌氧化还原酶 |
psr | 转录调节蛋白 |
tst | 硫代硫酸盐-硫转移酶 |
rhd | 硫代硫酸盐-氰化物硫转移酶 |
fcc | 黄素细胞色素c |
grx | 谷氧还蛋白 |
gst | 谷胱甘肽S-转移酶 |
gsr | 谷胱甘肽还原酶 |
gshp | 谷胱甘肽过氧化物酶 |
cydAB | 细胞色素d泛醌氧化酶 |
cyoABCD | 细胞色素o泛醌氧化酶 |
soxAX | 细胞色素c550 |
soxB | 硫酯酶 |
soxC | Mo-co蛋白 |
soxF | 黄素腺嘌呤二核苷酸 |
soxY | 硫代硫酸盐氧化载体蛋白 |
soxX | 细胞色素c |
[1] | 刘晓玲, 徐瑶瑶, 宋晨, 等. 城市黑臭水体治理技术及措施分析[J]. 环境工程学报, 2019,13(3):519-529. |
Liu XL, Xu YY, Song C, et al. Analysis of treatment technologies and measures for the urban black-stinking water body[J]. Chinese Journal of Environmental Engineering, 2019,11(3):519-529. | |
[2] | Wei LF, Huang C, Wang ZX, et al. Monitoring of urban black-odor water based on nemerow index and gradient boosting decision tree regression using uav-borne hyperspectral imagery[J]. Remote Sensing, 2019,11(20):2042. |
[3] |
Liang ZW, Siegert M, Fang WW, et al. Blackening and odorization of urban rivers:a bio-geochemical process[J]. FEMS Microbiology Ecology, 2018, 94(3):UNSP fix180.
URL pmid: 33068111 |
[4] | Sun SL, Sheng YQ, Sun RC, et al. Study on evolution and mechanism of river water black-odor and malodorous sulfide[J]. Environmental Science and Technology, 2018,41(3):15-22. |
[5] | 徐瑶瑶, 宋晨, 宋楠楠, 等. 复合菌对黑臭水体中S2-的氧化条件优化及动力学特性 [J]. 环境工程学报, 2019,13(3):530-540. |
Xu YY, Song C, Song NN, et al. Condition optimization and kinetic characteristics of S2- bio-oxidation in a black-stinking water bo-oxidation in a black-sinking water body by composite microorganisms[J]. Chinese Journal of Environmental Engineering, 2019,13(3):530-540. | |
[6] | 徐瑶瑶, 宋晨, 路金霞, 等. 寡养单胞菌对S2-氧化特性及主要代谢途径 [J]. 中国环境科学, 2019,39(8):3373-3382. |
Xu YY, Song C, Lu JX, et al. S2--oxidizing characteristics and main bio-oxidation metabolic pathway of Stenotrophomonas sp.sp3 [J]. China Environmental Science, 2019,39(8):3373-3382. | |
[7] |
Song C, Liu XL, Song YH, et al. Key blackening and stinking pollutants in dongsha river of beijing:spatial distribution and source identification[J]. Journal of Environmental Management, 2017,200:335-346.
URL pmid: 28595127 |
[8] |
Gagol M, Soltani RDC, Przyjazny A, et al. Effective degradation of sulfide ions and organic sulfides in cavitation-based advanced oxidation processes(AOPs)[J]. Ultrasonics Sonochemistry, 2019,58:104610.
URL pmid: 31450382 |
[9] |
Joshi DR, Zhang Y, Gao YX, et al. Biotransformation of nitrogen- and sulfur-containing pollutants during coking wastewater treatment:correspondence of performance to microbial community functional structure[J]. Water Research, 2017,121:338-348.
URL pmid: 28570873 |
[10] | Liu C, Shen Q, Zhou Q, et al. Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake[J]. Ecological Engineering, 2015,77:139-145. |
[11] |
Friedrich CG, Bardischewsky F, Rother D, et al. Prokaryotic sulfur oxidation[J]. Current Opinion in Microbiology, 2005,8(3):253-259.
URL pmid: 15939347 |
[12] | 谭文勃, 马晓丹, 黄聪, 等. 1株异养反硝化硫细菌的分离鉴定及代谢特性[J]. 环境科学, 2017,38(2):809-814. |
Tan WB, Ma XD, Huang C, et al. Isolation, identification and metabolic characteristics of a heterotrophic denitrifying sulfur bacterial strain[J]. Environmental Science, 2017,38(2):809-814. | |
[13] |
Feng SS, Lin X, Tong YJ, et al. Biodesulfurization of sulfide wastewater for elemental sulfur recovery by isolated Halothiobacillus neapolitanus in an internal airlift loop reactor[J]. Bioresource Technology, 2018,264:244-252.
URL pmid: 29843112 |
[14] |
Chang CY, Chen SY, Klipkhayai P, et al. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil[J]. Environmental Science and Pollution Research, 2018,26(7):6818-6828.
URL pmid: 30635877 |
[15] | Gholipour S, Mehrkesh P, Azin E, et al. Biological treatment of toxic refinery spent sulfidic caustic at low dilution by sulfur-oxidizing fungi[J]. Journal of Environmental Chemical Engineering, 2018,6(2):2762-2767. |
[16] |
Hou NK, Xia YZ, Wang X, et al. H2S biotreatment with sulfide-oxidizing heterotrophic bacteria[J]. Biodegradation, 2018,29(6):511-524.
URL pmid: 30141069 |
[17] |
Watling HR, Collinson DM, Corbett MK, et al. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)and sulfur-oxidizing microorganisms[J]. Research in Microbiology, 2016,167(7):546-554.
URL pmid: 27212381 |
[18] | Semrany S, Favier L, Djelal H, et al. Bioaugmentation:possible solution in the treatment of bio-refractory organic compounds(bio-rocs)[J]. Biochemical Engineering Journal, 2012,69(51):75-86. |
[19] | 杜聪, 冯胜, 张毅敏, 等. 微生物菌剂对黑臭水体水质改善及生物多样性修复效果研究[J]. 环境工程, 2018,36(8):1-7. |
Du C, Feng S, Zhang YM, et al. Study on the improvement of water quality and biological diversity of black and odorous water by microbial inoculants[J]. Environmental Engineering, 2018,36(8):1-7. | |
[20] | Chen JN, Zhan P, Koopman B, et al. Bioaugmentation with gordonia strain JW8 in treatment of pulp and paper wastewater[J]. Clean Technologies and Environmental Policy, 2012,14(5):899-904. |
[21] | Hong P, Wu XQ, Shu YL, et al. Bioaugmentation treatment of nitrogen-rich wastewater with a denitrifier with biofilm-formation and nitrogen-removal capacities in a sequencing batch biofilm reactor[J]. Bioresource Technology, 2020,303:122905. |
[22] | 王海珊, 邹平, 付先萍, 等. 黑臭水体组合生物净化技术研究进展[J]. 环境工程技术学报, 2020,10(1):56-62. |
Wang HS, Zou P, Fu XP, et al. Research progress on combined biological purification technologies for black and smelly water bodies[J]. Journal of Environmental Engineering Technology, 2020,10(1):56-62. | |
[23] | Li SY, Zhang QF. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the upper han river, China[J]. Journal of Hzardous Materials, 2010,181(1-3):1051-1058. |
[24] |
Lee EY, Lee NY, Cho K, et al. Removal of hydrogen sulfide by sulfate-resistant acidithiobacillus thiooxidans AZ11[J]. Journal of Bioscience and Bioengineering, 2006,101(4):309-314.
doi: 10.1263/jbb.101.309 URL pmid: 16716938 |
[25] |
Slobodkina GB, Baslerov RV, Novikov AA, et al. Inmirania thermothiophila gen. nov. , sp nov. , a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2016,66:701-706.
URL pmid: 26582356 |
[26] | Zhuang R, Lou Y, Qiu X, et al. Identification of a yeast strain able to oxidize and remove sulfide high efficiently[J]. Applied Microbiology and Biotechnology, 2017,101(1):391-400. |
[27] |
Peng Y, Leung H, Yiu SM, et al. Idba-ud:a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth[J]. Bioinformatics, 2012,28(11):1420-1428.
doi: 10.1093/bioinformatics/bts174 URL pmid: 22495754 |
[28] |
Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with glimmer[J]. Bioinformatics, 2007,23(6):673-679.
URL pmid: 17237039 |
[29] | 冯玉雪, 毛缜, 吕蒙蒙. 一株DDT降解菌的筛选及其降解特性[J]. 中国环境科学, 2018,38(5):1935-1942. |
Feng YX, Mao Z, Lv MM. Screening and degradation characteristics of a DDT-degrading bacteria[J]. China Environmental Science, 2018,38(5):1935-1942. | |
[30] | 东秀珠, 蔡妙英. 常见细菌系统鉴定乎册[M]. 北京: 科学出版社, 2002. |
Dong XZ, Cai MY. Systematic identification of common bacteria[M]. Beijing: Science Press, 2002. | |
[31] |
Venkidusamy K, Hari AR, Megharaj MP. Fe(III)reducing exoelectrogen Citrobacter sp. KVM11, isolated from hydrocarbon fed microbial electrochemical remediation systems[J]. Frontiers in Microbiology, 2018,9:349.
URL pmid: 29593662 |
[32] |
Shahryari Z, Gheisari K, Motamedi H. Effect of sulfate reducing Citrobacter sp. strain on the corrosion behavior of api X70 microalloyed pipeline steel[J]. Materials Chemistry and Physics, 2019, 236:UNSP 121799.
URL pmid: 20824196 |
[33] | Shan SP, Guo ZH, Lei P. Increased biomass and reduced tissue cadmium accumulation in rice via indigenous Citrobacter sp. XT1-2-2 and its mechanisms[J]. Science of The Total Environment, 2020,708:135224. |
[34] | Peter AG, Roger JDV. Metabolic uncouplers for controlling biomass accumulation in biological waste treatment systems[J]. Reviews in Environmental Science and Bio/Technology, 2017,17:1-18. |
[35] | 陈小红. 一株分离自网箱养殖区沉积物的硫氧化菌B1-1的鉴定及其硫氧化特性[J]. 微生物学通报, 2018,45(10):2082-2090. |
Chen XH. Identification and characterization of a sulfur-oxidizing bacterium B1-1 isolated from the sediment of marine cage culture area[J]. Microbiology China, 2018,45(10):2082-2090. | |
[36] | 庞博文. 用于黑臭水体修复的硫氧化菌师选与特性研究[D]. 北京:清华大学, 2017. |
Pang BW. Isolation and characteristics of sulfide oxidizing bacteria used for bioremediation of odorous river[D]. Beijing:Tsinghua University, 2017. | |
[37] | Jaffer YD, Kumar HS, Vinothkumar R, et al. Isolation and characterization of heterotrophic nitrification-aerobic denitrification and sulphur-oxidizing bacterium Paracoccus saliphilus strain SPUM from coastal shrimp ponds[J]. Aquaculture International, 2019,27(5):1513-1524. |
[38] | 刘阳, 姜丽晶, 邵宗泽. 硫氧化细菌的种类及硫氧化途径的研究进展[J]. 微生物学报, 2018,58(2):191-201. |
Liu Y, Jiang LJ, Shao ZZ. Advances in sulfur-oxidizing bacterial taxa and their sulfur oxidation pathways[J]. Acta Microbiologica Sinica, 2018,38(2):191-201. | |
[39] |
Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews, 2009,33(6):999-1043.
URL pmid: 19645821 |
[40] | Imhoff JF, Thiel V. Phylogeny and taxonomy of chlorobiaceae[J]. Photosynjournal Research, 2010,104(2-3):123-136. |
[41] | Kelly DP, Shergill JK, Lu WP, et al. Oxidative metabolism of inorganic sulfur compounds by bacteria[J]. Antonie van Leeuwenhoek, 1997,71(1-2):95-107. |
[42] |
Tan T, Liu C, Liu L, et al. Hydrogen sulfide formation as well as ethanol production in different media by cysND- and/or cysIJ -inactivated mutant strains of Zymomonas mobilis ZM4[J]. Bioprocess Biosyst Eng, 2013,36(10):1363-1373.
URL pmid: 23086550 |
[43] | Quatrini R, Appia AC, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans[J]. BMC Genomics, 2009,10(1):394-412. |
[44] | Toghrol F, Southerland WM. Purification of Thiobacillus novellus sulfite oxidase. Evidence for the presence of heme and molybdenum[J]. The Journal of Biological Chemistry, 1983,258(11):6762-6766. |
[45] |
Bruser T, Selmer T, Dahl C. “ADP sulfurylase” from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases[J]. The Journal of Biological Chemistry, 2000,275(3):1691-1698.
URL pmid: 10636864 |
[46] | Rohwerder T, Sand W. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes[J]. Engineering in Life Sciences, 2007,7(4):301-309. |
[47] | Sakurai H, Ogawa T, Shiga M, et al. Inorganic sulfur oxidizing system in green sulfur bacteria[J]. Photosynjournal Research, 2010,104(2):163-176. |
[48] | Holden MTG, Titball RW, Peacock SJ, et al. Genornic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(39):14240-14245. |
[49] |
Moller MC, Hederstedt L. Extracytoplasmic processes impaired by inactivation of trxA(thioredoxin gene)in Bacillus subtilis[J]. Journal of Bacteriology, 2008,190(13):4660-4665.
URL pmid: 18456801 |
[1] | PAN Hu, ZHOU Zi-qiong, TIAN Yun. Screening Identification and Degradation Characteristics of Three Iprodione-degrading Strains [J]. Biotechnology Bulletin, 2023, 39(6): 298-307. |
[2] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[3] | GULJAMAL·Aisa , XING Jun, LI An, ZHANG Rui. Non-targeted Metabolomics Analysis of Benzo(α)pyrene by Microorganisms in Kefir Grains [J]. Biotechnology Bulletin, 2022, 38(5): 123-135. |
[4] | MA Qing-yun, JIANG Xu, LI Qing-qing, SONG Jin-long, ZHOU Yi-qing, RUAN Zhi-yong. Isolation and Identification of Nicosulfuron Degrading Strain Chryseobacterium sp. LAM-M5 and Study on Its Degradation Pathway [J]. Biotechnology Bulletin, 2022, 38(2): 113-122. |
[5] | LI Meng-fan, XIE Yun-xuan, XIE Ning-dong, ZHANG Ai-qing, WANG Guang-yi. Research Status in the Production of Squalene by Thraustochytrids [J]. Biotechnology Bulletin, 2021, 37(4): 234-244. |
[6] | YUE Li-xiao, LI Deng-yun, ZHANG Jing-jing, TONG Lei. Isolation and Application Potential Exploration of a Diuron-degrading Bacterium [J]. Biotechnology Bulletin, 2020, 36(6): 110-119. |
[7] | QIU Shi-zheng, LI Jia-yi, YANG Jing-chen, LIU Chang-li. Research Progress of Low-cost Method of Synthetizing Polyhydroxyalkanoates(PHAs) [J]. Biotechnology Bulletin, 2019, 35(9): 45-52. |
[8] | LI Ran, HUANG Yu-qing, JIA Zhen-hua. Research of Progress of Strategy and Application of Metabolic Pathway Modification in Escherichia coli [J]. Biotechnology Bulletin, 2019, 35(8): 232-237. |
[9] | TANG Xian, DING Xiang, DONG Ming-ming, ZHU Miao, SONG Zhi-qiang, HOU Yi-ling. Transcriptome Analysis of Clavariadelphus pistillaris Fruiting Bodies at Different Development Stages [J]. Biotechnology Bulletin, 2019, 35(10): 119-129. |
[10] | WANG Jia-yi FAN, Shuang-hu, REN Chao, WANG Jun-huan, YANG Ting, JIA Yang, LI Xian-jun, YAN Yan-chun. Identification of Newly Isolated Xanthobacter sp. and Its Degradability to Phthalic Acid Esters [J]. Biotechnology Bulletin, 2018, 34(10): 157-164. |
[11] | MA Fu-qiang, YANG Guang-yu. Ultra-high-throughput Screening System Based on Droplet Microfluidics and Its Applications in Synthetic Biology [J]. Biotechnology Bulletin, 2017, 33(1): 83-92. |
[12] | MAO Jia-ling, XU Lin, YAN Ming. Construction and Characterization of the Pathways of Synthesizing Lactate in Vitro Related to NADP(H) [J]. Biotechnology Bulletin, 2016, 32(9): 260-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||