Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 145-154.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0396
Previous Articles Next Articles
ZHU Qing-yuan(), LI Tian-qing()
Received:
2020-04-09
Online:
2021-01-26
Published:
2021-01-15
Contact:
LI Tian-qing
E-mail:690720467@qq.com;litianqing12@sina.com
ZHU Qing-yuan, LI Tian-qing. Applications of Single-cell RNA Sequencing in Heart Development,Disease and Medicine[J]. Biotechnology Bulletin, 2021, 37(1): 145-154.
发表年份 | 测序技术 | UMI长度/bp | 基因数 | 精度 | 单细胞捕获方法 | 扩增噪音 | 单个细胞成本 | 参考文献 |
---|---|---|---|---|---|---|---|---|
2012 | Smart-seq/C1 | 0 | 中 | 中 | 平板 | 高 | 高 | [9] |
2014 | Smart-seq2 | 0 | 高 | 高 | 平板 | 中高 | 高 | [11] |
2014 | MARS-seq | 8 | 低 | 低 | 微流 | 中 | 高 | [12] |
2015 | Drop-seq | 8 | 低 | 中高 | 液滴 | 低 | 中 | [14] |
2016 | CEL-seq2/C1 | 6 | 中 | 低 | 微流 | 低 | 高 | [20] |
2016 | SORT-seq | 4 | 高 | 高 | 平板 | 低 | 中 | [21] |
2017 | 10×Genomics | 10 | 高 | 中 | 油滴 | 低 | 低 | [15] |
2018 | mcSCRB-seq | 10 | 中 | 中 | 平板 | 低 | 高 | [22] |
发表年份 | 测序技术 | UMI长度/bp | 基因数 | 精度 | 单细胞捕获方法 | 扩增噪音 | 单个细胞成本 | 参考文献 |
---|---|---|---|---|---|---|---|---|
2012 | Smart-seq/C1 | 0 | 中 | 中 | 平板 | 高 | 高 | [9] |
2014 | Smart-seq2 | 0 | 高 | 高 | 平板 | 中高 | 高 | [11] |
2014 | MARS-seq | 8 | 低 | 低 | 微流 | 中 | 高 | [12] |
2015 | Drop-seq | 8 | 低 | 中高 | 液滴 | 低 | 中 | [14] |
2016 | CEL-seq2/C1 | 6 | 中 | 低 | 微流 | 低 | 高 | [20] |
2016 | SORT-seq | 4 | 高 | 高 | 平板 | 低 | 中 | [21] |
2017 | 10×Genomics | 10 | 高 | 中 | 油滴 | 低 | 低 | [15] |
2018 | mcSCRB-seq | 10 | 中 | 中 | 平板 | 低 | 高 | [22] |
细胞类型 | 共有标记基因 | 亚型 | 标记基因 | 结合空间转录组定位 |
---|---|---|---|---|
心肌 | TNNT2、TNNC1、ACTC1、TNNI3、ACTN2、NKX2-5、ENO3、COX6A2 | 心室肌 | MYH7、MYL2、LBH、NAV1、HAND1 | 心室 |
心房肌 | MYH6、TBX5、PAM、HNF4A | 心房 | ||
小梁肌 | ANGPT1、COL2A1、ITGA6、RELN、SLIT2、CRABP2 | |||
myoz2心肌 | MYOZ2、FABP3 | 心房和心室 | ||
表达细胞外基质基因心肌 | OPHN1、FOXK1、COL2A1、DCN | |||
致密化心肌 | ||||
内皮 | RAMP2、EMCN、PECAM1、CDH5、TIE1、TEK、HES1 | 冠状动脉内皮 | FABP4、CD36 | 致密化心肌 |
血管内皮 | ELN、FNLN5 | |||
瓣膜内皮 | NTRK2、NFATC1 | |||
心内膜内皮 | CDH11、NPR3 | 小梁肌 | ||
心外膜 | UPK3B、ALDH1A2、WT1、TBX18 | 心外膜 | CFB、C3、PRG4、ITLN1 | 心脏最外层包绕心脏 |
心外膜前体细胞 | KLK6、CRABP2、TCF21 | 房室区心外膜下间质 | ||
成纤维细胞 | DCN、COL1A1、FBLN1、LUM、TCF21 | 骨骼肌结缔组织样成纤维 | 流出道、瓣膜 | |
小血管发育成纤维 | 心外膜下 | |||
大血管发育成纤维 | 靠近流出道 | |||
平滑肌样成纤维 | 流出道、房室区心外膜下间质 | |||
神经嵴细胞 | ISL1、STMN2 | 纵隔间质和流出道 | ||
施旺细胞 | ALDH1A1、DHH | 纵隔间质和流出道房室外膜下间质 | ||
瓣膜细胞 | APCDD1、EDIL3、SCRG1、SLN、NR4A2 |
细胞类型 | 共有标记基因 | 亚型 | 标记基因 | 结合空间转录组定位 |
---|---|---|---|---|
心肌 | TNNT2、TNNC1、ACTC1、TNNI3、ACTN2、NKX2-5、ENO3、COX6A2 | 心室肌 | MYH7、MYL2、LBH、NAV1、HAND1 | 心室 |
心房肌 | MYH6、TBX5、PAM、HNF4A | 心房 | ||
小梁肌 | ANGPT1、COL2A1、ITGA6、RELN、SLIT2、CRABP2 | |||
myoz2心肌 | MYOZ2、FABP3 | 心房和心室 | ||
表达细胞外基质基因心肌 | OPHN1、FOXK1、COL2A1、DCN | |||
致密化心肌 | ||||
内皮 | RAMP2、EMCN、PECAM1、CDH5、TIE1、TEK、HES1 | 冠状动脉内皮 | FABP4、CD36 | 致密化心肌 |
血管内皮 | ELN、FNLN5 | |||
瓣膜内皮 | NTRK2、NFATC1 | |||
心内膜内皮 | CDH11、NPR3 | 小梁肌 | ||
心外膜 | UPK3B、ALDH1A2、WT1、TBX18 | 心外膜 | CFB、C3、PRG4、ITLN1 | 心脏最外层包绕心脏 |
心外膜前体细胞 | KLK6、CRABP2、TCF21 | 房室区心外膜下间质 | ||
成纤维细胞 | DCN、COL1A1、FBLN1、LUM、TCF21 | 骨骼肌结缔组织样成纤维 | 流出道、瓣膜 | |
小血管发育成纤维 | 心外膜下 | |||
大血管发育成纤维 | 靠近流出道 | |||
平滑肌样成纤维 | 流出道、房室区心外膜下间质 | |||
神经嵴细胞 | ISL1、STMN2 | 纵隔间质和流出道 | ||
施旺细胞 | ALDH1A1、DHH | 纵隔间质和流出道房室外膜下间质 | ||
瓣膜细胞 | APCDD1、EDIL3、SCRG1、SLN、NR4A2 |
[1] | Sylva M, van den Hoff MJ, Moorman AF. Development of the human heart[J]. American Journal of Medical Genetics Part A, 2014,164(6):1347-1371. |
[2] | Meilhac SM, Buckingham ME. The deployment of cell lineages that form the mammalian heart[J]. Nature Reviews Cardiology, 2018,15(11):705-724. |
[3] |
Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells[J]. Nature Reviews Genetics, 2005,6(11):826-835.
URL pmid: 16304598 |
[4] | McFadden DG, Barbosa AC, Richardson JA, et al. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner[J]. Development, 2005,132(1):189-201. |
[5] | Cui Y, Zheng Y, Liu X, et al. Single-cell transcriptome analysis maps the developmental track of the human heart[J]. Cell Reports, 2019, 26(7):1934-1950. e1935. |
[6] | Sahara M, Santoro F, Sohlmér J, et al. Population and single-cell analysis of human cardiogenesis reveals unique LGR5 ventricular progenitors in embryonic outflow tract[J]. Developmental Cell, 2019, 48(4):475-490. e477. |
[7] | Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nature Methods, 2009,6(5):377. |
[8] |
Islam S, Kjällquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq[J]. Genome Research, 2011,21(7):1160-1167.
URL pmid: 21543516 |
[9] | Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nature Biotechnology, 2012,30(8):777. |
[10] |
Hashimshony T, Wagner F, Sher N, et al. CEL-Seq:single-cell RNA-seq by multiplexed linear amplification[J]. Cell Reports, 2012,2(3):666-673.
URL pmid: 22939981 |
[11] |
Picelli S, Björklund ÅK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nature Methods, 2013,10(11):1096-1098.
URL pmid: 24056875 |
[12] |
Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014,343(6172):776-779.
URL pmid: 24531970 |
[13] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015,161(5):1202-1214.
URL pmid: 26000488 |
[14] |
Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015,161(5):1187-1201.
URL pmid: 26000487 |
[15] |
Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nature Communications, 2017,8:14049.
doi: 10.1038/ncomms14049 URL pmid: 28091601 |
[16] | Gierahn TM, Wadsworth MH, Hughes TK, et al. Seq-Well:portable, low-cost RNA sequencing of single cells at high throughput[J]. Nature Methods, 2017,14(4):395-398. |
[17] | Han X, Wang R, Zhou Y, et al. Mapping the mouse cell atlas by microwell-seq[J]. Cell, 2018,173(5):1307. |
[18] | Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding[J]. Science, 2018,360(6385):176-182. |
[19] | Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq:A scalable technology for measuring genome-wide expression at high spatial resolution[J]. Science, 2019,363(6434):1463-1467. |
[20] | Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biology, 2016,17:77. |
[21] |
Muraro MJ, Dharmadhikari G, Grün D, et al. A single-cell transcriptome atlas of the human pancreas[J]. Cell Systems, 2016,3(4):385-394.
URL pmid: 27693023 |
[22] |
Bagnoli JW, Ziegenhain C, Janjic A, et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq[J]. Nature Communications, 2018,9(1):2937.
doi: 10.1038/s41467-018-05347-6 URL pmid: 30050112 |
[23] |
Li G, Xu A, Sim S, et al. Transcriptomic profiling maps anatomically patterned subpopulations among single embryonic cardiac cells[J]. Developmental Cell, 2016,39(4):491-507. e3.
URL pmid: 27840109 |
[24] | DeLaughter DM, Bick AG, Wakimoto H, et al. Single-cell resolution of temporal gene expression during heart development[J]. Developmental Cell, 2016,39(4):480-490. |
[25] | Lescroart F, Wang X, Lin X, et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq[J]. Science, 2018,359(6380):1177-1181. |
[26] |
Asp M, Giacomello S, Larsson L, et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart[J]. Cell, 2019,179(7):1647-1660. e1619.
doi: 10.1016/j.cell.2019.11.025 URL pmid: 31835037 |
[27] | Su T, Stanley G, Sinha R, et al. Single-cell analysis of early progenitor cells that build coronary arteries[J]. Nature, 2018,559(7714):356-362. |
[28] |
Kalluri AS, Vellarikkal SK, Edelman ER, et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations[J]. Circulation, 2019,140(2):147-163.
doi: 10.1161/CIRCULATIONAHA.118.038362 URL pmid: 31146585 |
[29] |
McDonald AI, Shirali AS, Aragón R, et al. Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities[J]. Cell Stem Cell, 2018,23(2):210-225.
doi: 10.1016/j.stem.2018.07.011 URL |
[30] | Wirka RC, Wagh D, Paik DT, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis[J]. Nature Medicine, 2019,25(8):1280-1289. |
[31] | Yao F, Yu P, Li Y, et al. Histone variant H2A. Z is required for the maintenance of smooth muscle cell identity as revealed by single-cell transcriptomics[J]. Circulation, 2018,138(20):2274-2288. |
[32] |
Cochain C, Vafadarnejad E, Arampatzi P, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis[J]. Circulation Research, 2018,122(12):1661-1674.
doi: 10.1161/CIRCRESAHA.117.312509 URL pmid: 29545365 |
[33] | Winkels H, Ehinger E, Vassallo M, et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry[J]. Circulation Research, 2018,122(12):1675-1688. |
[34] |
Friedman CE, Nguyen Q, Lukowski SW, et al. Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation[J]. Cell Stem Cell, 2018,23(4):586-598.
doi: 10.1016/j.stem.2018.09.009 URL pmid: 30290179 |
[35] | Churko JM, Garg P, Treutlein B, et al. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis[J]. Nature Communications, 2018,9(1):4906. |
[36] |
Paik DT, Tian L, Lee J, et al. Large-scale single-cell RNA-seq reveals molecular signatures of Heterogeneous populations of human induced pluripotent stem cell-derived endothelial cells[J]. Circulation Research, 2018,123(4):443-450.
doi: 10.1161/CIRCRESAHA.118.312913 URL pmid: 29986945 |
[37] | McCracken IR, Taylor RS, Kok FO, et al. Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing[J]. European Heart Journal, 2020,41(9):1024-1036. |
[38] | Gladka MM, Molenaar B, de Ruiter H, et al. ingle-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation[J]. Circulation, 2018,138(2):166-180. |
[39] | Honkoop H, de Bakker DE, Aharonov A, et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart[J]. eLife, 2019,8:e50163. |
[40] | Paik DT, Rai M, Ryzhov S, et al. Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis[J]. Circulation Research, 2015,117(9):804-816. |
[41] | Wu Q, Liu Q, Zhan J, et al. Cited2 regulates proliferation and survival in young and old mouse cardiac stem cells[J]. BMC Molecular and Cell Biology, 2019,20(1):25. |
[42] | Elliott DA, Kirk EP, Yeoh T, et al. Cardiac homeobox gene NKX2-5 mutations and congenital heart disease:Associations with atrial septal defect and hypoplastic left heart syndrome[J]. Journal of the American College of Cardiology, 2003,41(11):2072-2076. |
[43] | Dong X, Fan P, Tian T, et al. Recent advancements in the molecular genetics of left ventricular noncompaction cardiomyopathy[J]. Clinica Chimica Acta, 2017,465:40-44. |
[44] | Grego-Bessa J, Luna-Zurita L, del Monte G, et al. Notch signaling is essential for ventricular chamber development[J]. Developmental Cell, 2007,12(3):415-429. |
[45] | Finsterer J, Stoellberger C, Towbin JA. Left ventricular noncompaction cardiomyopathy:cardiac, neuromuscular, and genetic factors[J]. Nature Reviews Cardiology, 2017,14(4):224. |
[46] | Lin X, Huo Z, Liu X, et al. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect[J]. Journal of Human Genetics, 2010,55(10):662-667. |
[47] | Maitra M, Koenig SN, Srivastava D, et al. Identification of GATA6 sequence variants in patients with congenital heart defects[J]. Pediatric Research, 2010,68(4):281. |
[48] | Holm H, Gudbjartsson DF, Sulem P, et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome[J]. Nature Genetics, 2011,43(4):316. |
[49] | Gollob MH, Jones DL, Krahn AD, et al. Somatic mutations in the connexin 40 gene(GJA5)in atrial fibrillation[J]. New England Journal of Medicine, 2006,354(25):2677-2688. |
[50] | Nomura S, Satoh M, Fujita T, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure[J]. Nature Communications, 2018,9(1):4435. |
[51] | Chen J, He J, Ni R, et al. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish[J]. Developmental Cell, 2019,49(5):697-710. e695. |
[52] | Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science, 2011,331(6020):1078-1080. |
[53] | Cai CL, Martin JC, Sun Y, et al. A myocardial lineage derives from Tbx18 epicardial cells[J]. Nature, 2008,454(7200):104-108. |
[54] | Coffee M, Biswanath S, Bolesani E, et al. Heart muscle tissue engineering[M]// In:Essential Current Concepts in Stem Cell Biology. Springer, 2020: 99-121. |
[1] | WU Hao, LIU Zi-wei, ZHENG Ying, DAI Ya-wen, SHI Quan. Study on the Heterogeneity of Human Gingival Mesenchymal Stem Cells at Single Cell Level [J]. Biotechnology Bulletin, 2023, 39(7): 325-332. |
[2] | KOU Jia-yi, WANG Yu-ling, ZENG Rui-lin, LAN Dao-liang. Application of Single-cell Transcriptome Sequencing in Mammalian [J]. Biotechnology Bulletin, 2022, 38(11): 41-48. |
[3] | GUO Dong-dong, SUN Fen, HE Xuan-ang, YANG Dong-ye, HUANG Lai-qiang. Application and Prospects of Single-Cell Sequencing in Liver Disease [J]. Biotechnology Bulletin, 2021, 37(1): 137-144. |
[4] | CáO Yán-ting, LIU Yán-feng, LI Jiáng-huá, LIU Long, DU Guo-cheng. ádvánces of Improving the Efficiency of Chemicál Biosynthesis Básed on Cell Subpopulátion Regulátion [J]. Biotechnology Bulletin, 2020, 36(4): 19-25. |
[5] | WANG Dan-rui, SHEN Wen-li, WEI Zi-yan, WANG Shang, DENG Ye. Applications of Single-cell Sequencing Technology in Microbial Ecology [J]. Biotechnology Bulletin, 2020, 36(10): 237-246. |
[6] | Liu Jintao, Wang Xingyi, Fan Li, Deng Xiancun, Liu Xuping, Tan Wensong. Effect of pH Heterogeneity in Large-scale Bioreactor on Fed-batch Culture Process of CHO cells [J]. Biotechnology Bulletin, 2015, 31(10): 236-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||