Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (8): 75-84.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0143
Previous Articles Next Articles
ZHANG Xiu-min1(), MA Shao-ying2, YANG Jie1, BAO Jin-yu1, ZHANG Xiao-ling1, TIAN Peng1, LU Ya-qi1, LI Sheng1()
Received:
2021-02-03
Online:
2021-08-26
Published:
2021-09-10
Contact:
LI Sheng
E-mail:969885130@qq.com;lish@gsau.edu.cn
ZHANG Xiu-min, MA Shao-ying, YANG Jie, BAO Jin-yu, ZHANG Xiao-ling, TIAN Peng, LU Ya-qi, LI Sheng. Optimization of Hairy Roots Culture System of Broccoli Aiming at the Yield of Secondary Metabolites[J]. Biotechnology Bulletin, 2021, 37(8): 75-84.
因素 Factor | 因素Factor | |||||
---|---|---|---|---|---|---|
接种量 Inoculation amount/g | 培养基体积 Medium volume/mL | 转速 Rotating speed/(r·min-1) | 温度 Temperature/℃ | pH | ||
接种量Inoculation amount/g | 0.05 0.1 0.15 0.2 0.25 | 100 | 110 | 25 | 6.0 | |
培养基体积Medium volume/mL | 0.15 | 80 90 100 110 120 | 110 | 25 | 6.0 | |
转速Rotating speed/(r·min-1) | 0.15 | 100 | 90 100 110 120 130 | 25 | 6.0 | |
温度Temperature/℃ | 0.15 | 100 | 110 | 21 23 25 27 29 | 6.0 | |
pH | 0.15 | 100 | 110 | 25 | 5.0 5.5 6.0 6.5 7.0 |
Table 1 Single factor experimental design
因素 Factor | 因素Factor | |||||
---|---|---|---|---|---|---|
接种量 Inoculation amount/g | 培养基体积 Medium volume/mL | 转速 Rotating speed/(r·min-1) | 温度 Temperature/℃ | pH | ||
接种量Inoculation amount/g | 0.05 0.1 0.15 0.2 0.25 | 100 | 110 | 25 | 6.0 | |
培养基体积Medium volume/mL | 0.15 | 80 90 100 110 120 | 110 | 25 | 6.0 | |
转速Rotating speed/(r·min-1) | 0.15 | 100 | 90 100 110 120 130 | 25 | 6.0 | |
温度Temperature/℃ | 0.15 | 100 | 110 | 21 23 25 27 29 | 6.0 | |
pH | 0.15 | 100 | 110 | 25 | 5.0 5.5 6.0 6.5 7.0 |
因素Factor | -1 | 0 | 1 |
---|---|---|---|
A:培养温度Culture temperature/℃ | 23 | 25 | 27 |
B:接种量Inoculation amount/g | 0.1 | 0.15 | 0.2 |
C:pH | 5 | 5.5 | 6 |
Table 2 Box-behnken test factor levels
因素Factor | -1 | 0 | 1 |
---|---|---|---|
A:培养温度Culture temperature/℃ | 23 | 25 | 27 |
B:接种量Inoculation amount/g | 0.1 | 0.15 | 0.2 |
C:pH | 5 | 5.5 | 6 |
Fig. 1 Effects of inoculation amount on the GRA and SF release in broccoli hairy root culture system A:GRA yield. B:SF yield. C:MYR activity,different small letters in the figure indicate significant difference(P ≤0.05),the same below
序号 Sequence number | A:接种量 Inoculation amount/g | B:培养温度 Culture temperature/℃ | C:pH | GRA及SF总产量 Total yield of GRA and SF /mg |
---|---|---|---|---|
1 | 0.10 | 23 | 5.5 | 1.18 |
2 | 0.10 | 27 | 5.5 | 1.61 |
3 | 0.20 | 23 | 5.5 | 1.80 |
4 | 0.20 | 27 | 5.5 | 1.71 |
5 | 0.15 | 23 | 5 | 1.51 |
6 | 0.15 | 27 | 5 | 1.31 |
7 | 0.15 | 23 | 6 | 1.71 |
8 | 0.15 | 27 | 6 | 1.81 |
9 | 0.10 | 25 | 5 | 1.75 |
10 | 0.20 | 25 | 5 | 1.76 |
11 | 0.10 | 25 | 6 | 1.40 |
12 | 0.20 | 25 | 6 | 1.88 |
13 | 0.15 | 25 | 5.5 | 2.61 |
14 | 0.15 | 25 | 5.5 | 2.48 |
15 | 0.15 | 25 | 5.5 | 2.18 |
16 | 0.15 | 25 | 5.5 | 2.31 |
17 | 0.15 | 25 | 5.5 | 2.58 |
Table 3 Response surface design and experimental results
序号 Sequence number | A:接种量 Inoculation amount/g | B:培养温度 Culture temperature/℃ | C:pH | GRA及SF总产量 Total yield of GRA and SF /mg |
---|---|---|---|---|
1 | 0.10 | 23 | 5.5 | 1.18 |
2 | 0.10 | 27 | 5.5 | 1.61 |
3 | 0.20 | 23 | 5.5 | 1.80 |
4 | 0.20 | 27 | 5.5 | 1.71 |
5 | 0.15 | 23 | 5 | 1.51 |
6 | 0.15 | 27 | 5 | 1.31 |
7 | 0.15 | 23 | 6 | 1.71 |
8 | 0.15 | 27 | 6 | 1.81 |
9 | 0.10 | 25 | 5 | 1.75 |
10 | 0.20 | 25 | 5 | 1.76 |
11 | 0.10 | 25 | 6 | 1.40 |
12 | 0.20 | 25 | 6 | 1.88 |
13 | 0.15 | 25 | 5.5 | 2.61 |
14 | 0.15 | 25 | 5.5 | 2.48 |
15 | 0.15 | 25 | 5.5 | 2.18 |
16 | 0.15 | 25 | 5.5 | 2.31 |
17 | 0.15 | 25 | 5.5 | 2.58 |
方差来源Source of variance | 平方和Sum of squares | 自由度df | 均方Means square | F | P | 显著性Significance |
---|---|---|---|---|---|---|
模型Model | 2.73 | 9 | 0.30 | 7.78 | 0.0065 | ** |
A-培养温度Culture temperature | 0.00072 | 1 | 0.00072 | 0.18 | 0.6805 | |
B-接种量Inoculation amount | 0.18 | 1 | 0.18 | 4.69 | 0.0671 | |
C-pH | 0.028 | 1 | 0.028 | 0.71 | 0.4281 | |
AB | 0.068 | 1 | 0.068 | 1.73 | 0.2296 | |
AC | 0.022 | 1 | 0.022 | 0.58 | 0.4725 | |
BC | 0.055 | 1 | 0.055 | 1.41 | 0.2730 | |
A2 | 0.99 | 1 | 0.99 | 25.35 | 0.0015 | ** |
B2 | 0.58 | 1 | 0.58 | 14.95 | 0.0062 | ** |
C2 | 0.55 | 1 | 0.55 | 14.16 | 0.0071 | ** |
残差Residual | 0.27 | 7 | 0.039 | |||
失拟项Lack of fit | 0.14 | 3 | 0.046 | 1.38 | 0.3701 | |
纯误差Pure error | 0.13 | 4 | 0.034 | |||
总值Total value | 3.01 | 16 | ||||
R2=0.9091 R2Adj=0.8629 |
Table 4 Analysis of variance response surface
方差来源Source of variance | 平方和Sum of squares | 自由度df | 均方Means square | F | P | 显著性Significance |
---|---|---|---|---|---|---|
模型Model | 2.73 | 9 | 0.30 | 7.78 | 0.0065 | ** |
A-培养温度Culture temperature | 0.00072 | 1 | 0.00072 | 0.18 | 0.6805 | |
B-接种量Inoculation amount | 0.18 | 1 | 0.18 | 4.69 | 0.0671 | |
C-pH | 0.028 | 1 | 0.028 | 0.71 | 0.4281 | |
AB | 0.068 | 1 | 0.068 | 1.73 | 0.2296 | |
AC | 0.022 | 1 | 0.022 | 0.58 | 0.4725 | |
BC | 0.055 | 1 | 0.055 | 1.41 | 0.2730 | |
A2 | 0.99 | 1 | 0.99 | 25.35 | 0.0015 | ** |
B2 | 0.58 | 1 | 0.58 | 14.95 | 0.0062 | ** |
C2 | 0.55 | 1 | 0.55 | 14.16 | 0.0071 | ** |
残差Residual | 0.27 | 7 | 0.039 | |||
失拟项Lack of fit | 0.14 | 3 | 0.046 | 1.38 | 0.3701 | |
纯误差Pure error | 0.13 | 4 | 0.034 | |||
总值Total value | 3.01 | 16 | ||||
R2=0.9091 R2Adj=0.8629 |
[1] |
Moreno DA, Carvajal M, López-Berenguer C, et al. Chemical and biological characterisation of nutraceutical compounds of broccoli[J]. J Pharm Biomed Anal, 2006, 41(5):1508-1522.
pmid: 16713696 |
[2] |
Sánchez-Pujante PJ, Gionfriddo M, Sabater-Jara AB, et al. Enhanced bioactive compound production in broccoli cells due to coronatine and methyl jasmonate is linked to antioxidative metabolism[J]. J Plant Physiol, 2020, 248:153136.
doi: 10.1016/j.jplph.2020.153136 URL |
[3] |
Vo QV, Rochfort S, Nam PC, et al. Synjournal of aromatic and indole alpha-glucosinolates[J]. Carbohydr Res, 2018, 455:45-53.
doi: 10.1016/j.carres.2017.11.004 URL |
[4] |
Okunade OA, Ghawi SK, Methven L, et al. Thermal and pressure stability of myrosinase enzymes from black mustard(Brassica nigra L. W. D. J. Koch. var. nigra), brown mustard(Brassica juncea L. Czern. var. juncea)and yellow mustard(Sinapsis alba L. subsp. maire)seeds[J]. Food Chem, 2015, 187:485-490.
doi: 10.1016/j.foodchem.2015.04.054 URL |
[5] | Lv X, Wang QL, Wang X, et al. Selection and microencapsulation of myrosinase enzyme from broccoli sprouts of different varieties and characteristics evaluation[J]. J Food Process Eng, 2020, 43(12):e13567. |
[6] |
Yagishita Y, Fahey JW, Dinkova-Kostova AT, et al. Broccoli or sulforaphane:is it the source or dose that matters?[J]. Molecules, 2019, 24(19):3593.
doi: 10.3390/molecules24193593 URL |
[7] |
Atwell LL, Hsu A, Wong CP, et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract[J]. Mol Nutr Food Res, 2015, 59(3):424-433.
doi: 10.1002/mnfr.v59.3 URL |
[8] | 山雨思, 代欢欢, 何潇, 等. 外源茉莉酸甲酯和水杨酸对盐胁迫下颠茄生理特性和次生代谢的影响[J]. 植物生理学报, 2019, 55(9):1335-1346. |
Shan YS, Dai HH, He X, et al. Effects of exogenous methyl jasmonate and salicylic acid on physiological characteristics and secondary metabolism of Atropa belladonna under Na Cl stress[J]. Plant Physiol J, 2019, 55(9):1335-1346. | |
[9] | Ankita Singh, Padmanabh Dwivedi. Methyl-jasmonate and salicylic acid as potent elicitors for secondary metabolite production in medicinal plants:A review[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(1):750-757. |
[10] |
Ku KM, Jeffery EH, Juvik JA. Exogenous methyl jasmonate treatment increases glucosinolate biosynjournal and quinone reductase activity in kale leaf tissue[J]. PLoS One, 2014, 9(8):e103407.
doi: 10.1371/journal.pone.0103407 URL |
[11] | 胡翠珍. 西兰花毛状根扩增体系的建立及真菌诱导子对其萝卜硫素累积的调控[D]. 兰州:甘肃农业大学, 2016. |
Hu CZ. Proliferation of broccoli hairy roots and regulation of sulforaphane accumulation by fungal elicitor[D]. Lanzhou:Gansu Agricultural University, 2016. | |
[12] |
Cai Z, Kastell A, Knorr D, et al. Exudation:an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures[J]. Plant Cell Rep, 2012, 31(3):461-477.
doi: 10.1007/s00299-011-1165-0 URL |
[13] | 包金玉. 转录组学解析茉莉酸甲酯调控西兰花毛状根次生代谢物质合成的分子机制[D]. 兰州:甘肃农业大学, 2020. |
Bao JY. Transcriptome analysis of the molecular mechanism of methyl jasmonate regulating the synthesis of secondary metabolites in broccoli hairy roots[D]. Lanzhou:Gansu Agricultural University, 2020. | |
[14] |
Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum(L.)Gaertn[J]. J Biotechnol, 2005, 119(1):60-69.
pmid: 16054261 |
[15] |
Perassolo M, Cardillo AB, Mugas ML, et al. Enhancement of anthraquinone production and release by combination of culture medium selection and methyl jasmonate elicitation in hairy root cultures of Rubia tinctorum[J]. Ind Crops Prod, 2017, 105:124-132.
doi: 10.1016/j.indcrop.2017.05.010 URL |
[16] |
Burow M, Losansky A, Müller R, et al. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis[J]. Plant Physiol, 2009, 149(1):561-574.
doi: 10.1104/pp.108.130732 URL |
[17] | 胡琼, 任国平. 资源植物毛状根培育及应用研究进展[J]. 北方园艺, 2020(6):141-148. |
Hu Q, Ren GP. Advances in hairy root cultivation and application of resource plants[J]. North Hortic, 2020(6):141-148. | |
[18] | 王瑜, 杨世海. 不同诱导子对王不留行毛状根生长和王不留行黄酮苷含量的影响[J]. 人参研究, 2014, 26(2):51-53. |
Wang Y, Yang SH. Effect of different elicitors on the growth and vaccarin of Vaccaria segetalis hairy roots[J]. Ginseng Res, 2014, 26(2):51-53. | |
[19] | 孙际薇. 茉莉酸甲酯对曼陀罗毛状根的生长及次生代谢产物产生的影响[D]. 重庆:西南大学, 2014. |
Sun JW. Effects of methyl jasmonate on the Datura stramonium L. hairy root growth and secondary metabolites[D]. Chongqing:Southwest University, 2014. | |
[20] | Cacho M, Pelaez R, Corchete P. Lipid composition of Silybum marianum cell cultures treated with methyl jasmonate[J]. Biol Plant, 2012, 56(2):221-226. |
[21] | 包金玉, 张聪聪, 马绍英, 等. 茉莉酸甲酯和水杨酸对西兰花毛状根增殖和萝卜硫素及信号分子含量的影响[J]. 植物生理学报, 2020, 56(6):1305-1312. |
Bao JY, Zhang CC, Ma SY, et al. Effects of MeJA and SA on hairy root proliferation and sulphur content in Brassia oleracea var. italica[J]. Plant Physiol J, 2020, 56(6):1305-1312. | |
[22] | 李旭, 朴炫春, 邵春绘, 等. 接种密度、培养基中蔗糖和活性炭浓度对生物反应器内大花蕙兰原球茎增殖的影响[J]. 广东农业科学, 2012, 39(5):1-3, 235. |
Li X, Piao XC, Shao CH, et al. Effect of enoculation density, sucrose and activated carbon concentration on Cymbidium hybridum protocorm proliferation by bioreactor culture[J]. Guangdong Agric Sci, 2012, 39(5):1-3, 235. | |
[23] | 张聪聪, 马绍英, 李胜, 等. 西兰花毛状根悬浮培养体系建立[J]. 分子植物育种, 2020, 18(4):1250-1258. |
Zhang CC, Ma SY, Li S, et al. Establishment of suspension culture system for broccoli hairy roots[J]. Mol Plant Breed, 2020, 18(4):1250-1258. | |
[24] | 韩昱姝. 金铁锁毛状根的扩大培养及其植株再生技术研究[D]. 大连:大连工业大学, 2014. |
Han YS. Studies on scaling up culture of Psammosilene tunicoides hairy roots and plantleting regeneration[D]. Dalian:Dalian Polytechnic University, 2014. | |
[25] | 袁金玲, 张朵, 顾小平, 等. 孝顺竹种胚愈伤组织悬浮培养条件优化[J]. 分子植物育种, 2009, 7(4):839-844. |
Yuan JL, Zhang D, Gu XP, et al. Suspension culture optimization of seed embryo callus from Bambusa multiplex[J]. Mol Plant Breed, 2009, 7(4):839-844. | |
[26] | 程立, 李思彤, 袁其朋. 黑芥子酶固定化在制备莱菔素中的应用[J]. 中国科学:化学, 2018, 48(6):676-682. |
Cheng L, Li ST, Yuan QP. The application of myrosinase immobilized in the production of sulforaphene[J]. Sci Sin:Chimica, 2018, 48(6):676-682. | |
[27] | 赵生琴. 西兰花毛状根的诱导及扩繁体系的建立[D]. 兰州:甘肃农业大学, 2015. |
Zhao SQ. Induction of hairy root by Agrobacterium rhizogenes and establishment of culture system of broccoli[D]. Lanzhou:Gansu Agricultural University, 2015. | |
[28] | 叶国洪, 穆虹, 徐凤彩. 培养条件对烟草细胞生长和CoQ10含量的影响[J]. 华南农业大学学报, 2000, 21(2):42-45, 53. |
Ye GH, Mu H, Xu FC. Effects of suspension culture conditions on tobacco cell growth and CoQ 10 production[J]. J South China Agric Univ, 2000, 21(2):42-45, 53. | |
[29] |
Grubb CD, Abel S. Glucosinolate metabolism and its control[J]. Trends Plant Sci, 2006, 11(2):89-100.
doi: 10.1016/j.tplants.2005.12.006 URL |
[30] | 孙晶, 杨洪一, 隋春. 不同因子对药用植物毛状根产量和次生代谢产物积累影响的研究进展[J]. 中国现代中药, 2014, 16(11):945-952. |
Sun J, Yang HY, Sui C. Research progress on various influences in hairy root yield and secondary metabolites accumulation of medicinal plant[J]. Mod Chin Med, 2014, 16(11):945-952. | |
[31] | 李翠芳, 王芳, 麻浩, 等. 培养基及温度对新疆紫草毛状根生长的影响[J]. 新疆农业科学, 2009, 46(5):1117-1120. |
Li CF, Wang F, Ma H, et al. Effects of culture medium and temperature on growth of Arnebia euchroma(royle)johnst hairy roots[J]. Xinjiang Agric Sci, 2009, 46(5):1117-1120. | |
[32] | 李春玲. 不同影响因子对水飞蓟毛状根生长及次级代谢产物的影响[D]. 长春:吉林农业大学, 2016. |
Li CL. Effects of different impact factors on the hairy root growth and its secondary metabolites of Silybum marianum(L.)gaertn[D]. Changchun:Jilin Agricultural University, 2016. |
[1] | ZHAO Guang-xu, YANG He-tong, SHAO Xiao-bo, CUI Zhi-hao, LIU Hong-guang, ZHANG Jie. Phosphate-solubilizing Properties and Optimization of Cultivation Conditions of Penicillium rubens: A Highly Efficient Phosphate Solubilizer [J]. Biotechnology Bulletin, 2023, 39(9): 71-83. |
[2] | XIE Dong, WANG Liu-wei, LI Ning-jian, LI Ze-lin, XU Zi-hang, ZHANG Qing-hua. Exploration, Identification and Phosphorus-solubilizing Condition Optimization of a Multifunctional Strain [J]. Biotechnology Bulletin, 2023, 39(7): 241-253. |
[3] | WANG Shuai, LV Hong-rui, ZHANG Hao, WU Zhan-wen, XIAO Cui-hong, SUN Dong-mei. Whole-Genome Sequencing Identification of Phosphate-solubilizing Bacteria PSB-R and Analysis of Its Phosphate-solubilizing Properties [J]. Biotechnology Bulletin, 2023, 39(1): 274-283. |
[4] | LI Si-si, ZHANG Bo-yuan, FU Yun-hui, ZHOU Jia, QU Jian-hang. Condition Optimization of an Efficient Phosphate-dissolving Bacterial Strain and Its Phosphate-dissolving Characteristics [J]. Biotechnology Bulletin, 2022, 38(12): 274-286. |
[5] | ZHANG Mei-jun, WU Qing, YIN Cui, WANG Ni, MA Xiao-qing, MA Xiao-xia, CAO Yun-e. Screening and Identification of an Antagonistic Strain Against Fusarium oxyporum f. sp. cucumerinum and Optimization of Culture Conditions [J]. Biotechnology Bulletin, 2020, 36(9): 125-136. |
[6] | LUO Su-ya, ZHENG Dou-dou, HE Guang-zheng, ZHANG Lin-lin, XU Shu-jing, JU Jian-song. Optimization of Catalytic Reaction Conditions for L-proline 4-Hydroxylase Using Response Surface Methodology [J]. Biotechnology Bulletin, 2020, 36(6): 157-164. |
[7] | WU Yi, MA Hong-fei, CAO Yong-jia, SI Jing, CUI Bao-kai. Medium Optimization for the Laccase Production by White Rot Fungus Porodaedalea laricis and Its Dye Decolorizing Capacity [J]. Biotechnology Bulletin, 2020, 36(1): 45-59. |
[8] | YANG Sheng-nan, LIU Na, SONG Dong-hui. Optimization of Chromium(VI)Removal by Mixture of Bacteria-microalgae and Determination of Chromium(VI)Reductase Activities [J]. Biotechnology Bulletin, 2019, 35(9): 83-92. |
[9] | LUO Xiao-fang, CHEN Li-hua, XIA Miao-miao, XU Shu-juan, XIONG Mei. Study on the Degradation of PAHs by Bacillus thuringiensis [J]. Biotechnology Bulletin, 2019, 35(9): 125-133. |
[10] | WANG Yu-jie, WANG Xiang-jun. Optimizing the Adsorption of Pb2+ on Modified Banana Peel Based on Response Surface Methodology [J]. Biotechnology Bulletin, 2019, 35(4): 188-194. |
[11] | MA Jin-jin, GE Bei-bei, SHI Li-ming, LIU Bing-hua, WEI Qiu-he, ZHANG Ke-cheng. Optimization of Fermentation Medium for Streptomyces roseoflavus NKZ-259 [J]. Biotechnology Bulletin, 2019, 35(2): 85-92. |
[12] | GUO Xue-wu, ZHANG Yu, GUAN Xiang-yu, NI Xiao-feng, WANG Qing, CHEN Ye-fu, XIAO Dong-guang. Transcriptomics Analysis of High-xylose-tolerance Klebsiella pneumonia Strain and Optimization of Fermentation Conditions for 2,3-butanediol Production [J]. Biotechnology Bulletin, 2018, 34(8): 159-169. |
[13] | MA Hong-fei, CUI Bao-kai, YUAN Yuan, CHEN Yuan-yuan, DAI Yu-cheng, SI Jing. Optimization of Liquid Medium Composition for the Production of Cellulase from Brown Rot Fungus Antrodia bambusicola by Response Surface Methodology [J]. Biotechnology Bulletin, 2018, 34(4): 91-101. |
[14] | HOU Ruo-lin, LIU Xin, XIANG Kai-kai, CHEN Lei, ZHENG Ming-feng, FU Jun-sheng. Optimization of Ultrasonic-assisted Extraction of Cordyceps militaris Proteins by Response Surface and Its Nutritional Assessment [J]. Biotechnology Bulletin, 2018, 34(11): 198-204. |
[15] | Lü Fan-yang, XU Ze-hua, MAO Xiao-jie, SUN Jian-guang. Isolation and Identification of an Imazethapyr-degrading Bacterium,and Optimization of Biodegradation Conditions [J]. Biotechnology Bulletin, 2017, 33(10): 163-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||