Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (9): 219-225.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0025
Previous Articles Next Articles
NIE Jia-yue(), YANG Wen-wen, FAN Hong-xia, WANG You-ping, WU De-wei()
Received:
2021-01-07
Online:
2021-09-26
Published:
2021-10-25
Contact:
WU De-wei
E-mail:jiayuenie@163.com;dewei@yzu.edu.cn
NIE Jia-yue, YANG Wen-wen, FAN Hong-xia, WANG You-ping, WU De-wei. Recent Advances in Plant Pep Peptide[J]. Biotechnology Bulletin, 2021, 37(9): 219-225.
Fig.1 Amino acid sequence conservation analysis of Pep precursor proteins PROPEP1-PROPEP8 from Arabidopsis thaliana The black underlines mark the position of mature Pep sequence after processing,the red underline marks the position of the SSG-x2-G-x2-N motif
Fig.3 Pep-PEPR signal transduction and the mechanisms underlying their regulation of plant growth,development and defense The precursor protein PROPEPs are cleaved by CM4 at appropriate Ca2 + concentration to release mature Peps,and this process is regulated by a positive feedback of Pep signaling pathway. The mature Peps are perceived by the receptor PEPRs,which enables PEPRs to form heterodimer with their co-receptor BAK1 and transduce the signal to cytoplasmic receptor kinase BIK1,thereby activating various downstream signal pathways,such as JA,ET,Auxin and ROS,to regulate plant growth and development,as well as plant defense responses
[1] |
Zhang J, Coaker G, Zhou JM, et al. Plant immune mechanisms:from reductionistic to holistic points of view[J]. Molecular Plant, 2020, 13(10):1358-1378.
doi: 10.1016/j.molp.2020.09.007 pmid: 32916334 |
[2] | 张杰, 董莎萌, 王伟, 等. 植物免疫研究与抗病虫绿色防控:进展、机遇与挑战[J]. 中国科学:生命科学, 2019, 49(11):1479-1507. |
Zhang J, Dong SM, Wang W, et al. Plant immunity and sustainable control of pests in China:Advances, opportunities and challenges[J]. Sci Sin:Vitae, 2019, 49(11):1479-1507. | |
[3] |
Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought[J]. Science, 2020, 368(6488):266-269.
doi: 10.1126/science.aaz7614 URL |
[4] |
Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead:damage-associated molecular pattern molecules and reduction/oxidation regulate immunity[J]. Immunol Rev, 2007, 220(1):60-81.
doi: 10.1111/imr.2007.220.issue-1 URL |
[5] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286 URL |
[6] |
Wu Y, Zhou JM. Receptor-like kinases in plant innate immunity[J]. J Integ Plant Biol, 2013, 55(12):1271-1286.
doi: 10.1111/jipb.12123 URL |
[7] |
Huffaker A, Dafoe NJ, Schmelz EA. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance[J]. Plant Physiol, 2011, 155(3):1325-1338.
doi: 10.1104/pp.110.166710 pmid: 21205619 |
[8] |
Lori M, van Verk MC, Hander T, et al. Evolutionary divergence of the plant elicitor peptides(Peps)and their receptors:interfamily incompatibility of perception but compatibility of downstream signalling[J]. J Exp Bot, 2015, 66(17):5315-5325.
doi: 10.1093/jxb/erv236 URL |
[9] |
Trivilin AP, Hartke S, Moraes MG. Components of different signalling pathways regulated by a new orthologue of AtPROPEP1 in tomato following infection by pathogens[J]. Plant Pathology, 2014, 63(5):1110-1118.
doi: 10.1111/ppa.2014.63.issue-5 URL |
[10] |
Klauser D, Desurmont GA, et al. The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory[J]. J Exp Bot, 2015, 66(17):5327-5336.
doi: 10.1093/jxb/erv250 URL |
[11] |
Ross A, Yamada K, Hiruma K, et al. The Arabidopsis PEPR pathway couples local and systemic plant immunity[J]. EMBO J, 2014, 33(1):62-75.
doi: 10.1002/embj.201284303 URL |
[12] |
Huffaker A, Pearce G, Veyrat N, et al. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense[J]. PNAS, 2013, 110(14):5707-5712.
doi: 10.1073/pnas.1214668110 pmid: 23509266 |
[13] |
Yamaguchi Y, Huffaker A, et al. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis[J]. Plant Cell, 2012, 22(2):508-522.
doi: 10.1105/tpc.109.068874 URL |
[14] |
Gully K, Hander T, Boller T, et al. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence[J]. Front Plant Sci, 2015, 6:14.
doi: 10.3389/fpls.2015.00014 pmid: 25667591 |
[15] |
Jing YP, Zheng XJ, et al. Danger-associated peptides interact with PIN-dependent local auxin distribution to inhibit root growth in Arabidopsis[J]. Plant Cell, 2019, 31(8):1767-1787.
doi: 10.1105/tpc.18.00757 URL |
[16] |
ten Hove CA, Bochdanovits Z, et al. Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set[J]. Plant Mol Biol, 2011, 76(1/2):69-83.
doi: 10.1007/s11103-011-9769-x URL |
[17] |
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, et al. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants[J]. PNAS, 2018, 115(22):5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074 |
[18] |
Huffaker A, Pearce G, Ryan CA. An endogenous peptide signal in Arabidopsis activates components of the innate immune response[J]. PNAS, 2006, 103(26):10098-10103.
pmid: 16785434 |
[19] |
Bartels S, Lori M, et al. The family of Peps and their precursors in Arabidopsis:differential expression and localization but similar induction of pattern-triggered immune responses[J]. J Exp Bot, 2013, 64(17):5309-5321.
doi: 10.1093/jxb/ert330 URL |
[20] |
Yamaguchi Y, Pearce G, Ryan CA. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells[J]. PNAS, 2006, 103(26):10104-10109.
pmid: 16785433 |
[21] |
Safaeizadeh M, Boller T. Differential and tissue-specific activation pattern of the AtPROPEP and AtPEPR genes in response to biotic and abiotic stress in Arabidopsis thaliana[J]. Plant Signal Behav, 2019, 14(5):e1590094.
doi: 10.1080/15592324.2019.1590094 URL |
[22] |
Bartels S, Boller T. Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development[J]. J Exp Bot, 2015, 66(17):5183-5193.
doi: 10.1093/jxb/erv180 URL |
[23] | Hander T, Fernández-Fernández ÁD, et al. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides[J]. Science, 2019, 363(6433):eaar7486. |
[24] |
Coll NS, Vercammen D, et al. Arabidopsis type I metacaspases control cell death[J]. Science, 2010, 330(6009):1393-1397.
doi: 10.1126/science.1194980 URL |
[25] |
Shen WZ, Liu JE, Li JF. Type-II metacaspases mediate the processing of plant elicitor peptides in Arabidopsis[J]. Molecular Plant, 2019, 12(11):1524-1533.
doi: 10.1016/j.molp.2019.08.003 URL |
[26] | Zhu P, Yu XH, et al. Structural basis for Ca2+-dependent activation of a plant metacaspase[J]. Nat Communi, 2020, 11(1):1-9. |
[27] |
Ma CL, Guo J, et al. AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1-induced cytosolic Ca2+ rise, which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis roots[J]. J Integr Plant Biol, 2014, 56(7):684-694.
doi: 10.1111/jipb.12171 URL |
[28] |
Liu Z, Wu Y, et al. BIK1 interacts with PEPRs to mediate ethylene-induced immunity[J]. PNAS, 2013, 110(15):6205-6210.
doi: 10.1073/pnas.1215543110 URL |
[29] |
Tang J, Han ZF, Sun YD, et al. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1[J]. Cell Research, 2015, 25(1):110-120.
doi: 10.1038/cr.2014.161 URL |
[30] |
Claus LAN, Savatin DV, Russinova E. The crossroads of receptor-mediated signaling and endocytosis in plants[J]. J Int Plant Biol, 2018, 60(9):827-840.
doi: 10.1111/jipb.12672 URL |
[31] |
Ortiz-Morea FA, Savatin DV, Dejonghe W, et al. Danger-associated peptide signaling in Arabidopsis requires clathrin[J]. PNAS, 2016, 113(39):11028-11033.
doi: 10.1073/pnas.1605588113 pmid: 27651494 |
[32] |
Collins CA, LaMontagne ED, et al. EPSIN1 modulates the plasma membrane abundance of FLAGELLIN SENSING2 for effective immune responses[J]. Plant Physiol, 2020, 182(4):1762-1775.
doi: 10.1104/pp.19.01172 pmid: 32094305 |
[33] |
Krol E, Mentzel T, Chinchilla D, et al. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2[J]. J Biol Chem, 2010, 285(18):13471-13479.
doi: 10.1074/jbc.M109.097394 URL |
[34] |
Poncini L, Wyrsch I, Dénervaud Tendon V, et al. In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer[J]. PLoS One, 2017, 12(10):e0185808.
doi: 10.1371/journal.pone.0185808 URL |
[35] | Huang H, Gao H, Liu B, et al. bHLH13 regulates jasmonate-mediated defense responses and growth[J]. Evol Bioinform Online, 2018, 14:1176934318790265. |
[36] |
Kadota Y, Sklenar J, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Molecular Cell, 2014, 54(1):43-55.
doi: 10.1016/j.molcel.2014.02.021 URL |
[37] |
Jing YP, Shen N, et al. Danger-associated peptide regulates root immune responses and root growth by affecting ROS formation in Arabidopsis[J]. Int J Mol Sci, 2020, 21(13):4590.
doi: 10.3390/ijms21134590 URL |
[38] |
Zheng XJ, Kang S, Jing YP, et al. Danger-associated peptides close stomata by OST1-independent activation of anion channels in guard cells[J]. The Plant Cell, 2018, 30(5):1132-1146.
doi: 10.1105/tpc.17.00701 URL |
[39] |
Li J. Cell signaling leads the way[J]. J Integr Plant Biol, 2018, 60(9):743-744.
doi: 10.1111/jipb.12707 URL |
[40] |
Wang JJ, Wu DW, et al. Jasmonate action in plant defense against insects[J]. J Exp Bot, 2019, 70(13):3391-3400.
doi: 10.1093/jxb/erz174 URL |
[41] |
Yan C, Fan M, Yang M, et al. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynjournal[J]. Mol Cell, 2018, 70(1):136-149. e7.
doi: 10.1016/j.molcel.2018.03.013 URL |
[42] |
Jones DS, John A, VanDerMolen KR, et al. CLAVATA signaling ensures reproductive development in plants across thermal environments[J]. Current Biology, 2021, 31(1):220-227.e5.
doi: 10.1016/j.cub.2020.10.008 URL |
[43] | Yu M, Li RL, Cui YN, et al. The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis[J]. Development, 2020, 147(13):dev189902. |
[44] |
Stegmann M, Monaghan J, Smakowska-Luzan E, et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355(6322):287-289.
doi: 10.1126/science.aal2541 pmid: 28104890 |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | MIAO Yong-mei, MIAO Cui-ping, YU Qing-cai. Properties of Bacillus subtilis Strain BBs-27 Fermentation Broth and the Inhibition of Lipopeptides Against Fusarium culmorum [J]. Biotechnology Bulletin, 2023, 39(9): 255-267. |
[3] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[4] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[5] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[6] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[7] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[8] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[9] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[10] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[11] | SI Cheng, ZHONG Qi-wen, YANG Shi-peng. Assembly of Pepino Genome Based on PacBio's Third-generation Sequencing Technology [J]. Biotechnology Bulletin, 2022, 38(9): 180-190. |
[12] | ZHANG Feng-wen, ZHOU Li-ya, DONG Chao, SHI Yan-mao. Purification of Antioxidant Peptides from Natto Supernatant and Study on Its Activity [J]. Biotechnology Bulletin, 2022, 38(2): 158-165. |
[13] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[14] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[15] | HU Hua-ran, DU Lei, ZHANG Rui-hao, ZHONG Qiu-yue, LIU Fa-wan, GUI Min. Research Progress in the Adaptation of Hot Pepper(Capsicum annuum L.)to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(12): 58-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||