Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (9): 226-233.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1460
Previous Articles Next Articles
LIU Xiao-yi1(), YANG Jian2, LIU Jing1, WANG Bing1, DAI Liang-ying1(), LI Wei1()
Received:
2020-11-28
Online:
2021-09-26
Published:
2021-10-25
Contact:
DAI Liang-ying,LI Wei
E-mail:939496064@qq.com;daily@hunau.net;liwei350551@163.com
LIU Xiao-yi, YANG Jian, LIU Jing, WANG Bing, DAI Liang-ying, LI Wei. Research Progress in Heat Shock Transcription Factors in Oryza sativa[J]. Biotechnology Bulletin, 2021, 37(9): 226-233.
基因名 Gene name | 基因编号 Gene No. | 类别 Category | 定位 Position | 生物学功能 Biological function | 参考文献 Reference |
---|---|---|---|---|---|
OsHsfA2a | LOC_Os03g53340 | A类 | 染色体:3 | 抗氧化胁迫 | [ |
OsHsfA2b | LOC_Os07g08140 | A类 | 染色体:7 | 抗高盐 | [ |
OsHsfA2c | LOC_Os10g28340 | A类 | 染色体:10 | 抗高盐 | [ |
OsHsfA2d | LOC_Os03g06630 | A类 | 染色体:3 | 耐热 | [ |
OsHsfA2e | LOC_Os03g58160 | A类 | 染色体:3 | 耐热 | [ |
OsHsfA2f | LOC_Os06g36930 | A类 | 染色体:6 | 抗氧化胁迫 | [ |
OsHsfA3 | LOC_Os02g32590 | A类 | 染色体:2 | 抗寒 | [ |
OsHsfA4a | LOC_Os01g54550 | A类 | 染色体:1 | 抗氧化胁迫、增强镉耐受性 | [ |
OsHsfA4b | LOC_Os01g54550 | A类 | 染色体:1 | 抗高盐 | [ |
OsHsfA4d | LOC_Os05g45410 | A类 | 染色体:5 | 抗寒、抑制水稻叶片假斑病 | [ |
OsHsfA5 | LOC_Os02g29340 | A类 | 染色体:2 | 抗高盐 | [ |
OsHsfA7 | LOC_Os01g39020 | A类 | 染色体:1 | 抗高盐、抗寒、抗氧化胁迫、抗干旱 | [ |
OsHsfA9 | LOC_Os03g12370 | A类 | 染色体:3 | 抗高盐、抗寒 | [ |
OsHsf18 | 无 | A类 | 染色体:7 | 耐热、抗寒、抗干旱、抗高盐、抗白叶枯病、参与调控水稻农艺性状 | [ |
OsHsfB2b | LOC_Os08g43334 | B类 | 染色体:8 | 不抗干旱、不耐高盐 | [ |
OsHsfB4b | LOC_Os07g44690 | B类 | 染色体:7 | 抗寒、抗氧化胁迫 | [ |
OsHsfB4d | LOC_Os03g25120 | B类 | 染色体:3 | 抗细菌性条斑病 | [ |
OsHsfB2c2 | 无 | B类 | 无定位 | 抗白叶枯病 | [ |
OsHsf23 | LOC_Os09g28354 | B类 | 染色体:9 | 抑制稻瘟病菌 | [ |
OsHsfC1b | LOC_Os01g53220 | C类 | 染色体:1 | 抗寒、抗高盐 | [ |
Table 1 Classification and biological functions of rice HSFs
基因名 Gene name | 基因编号 Gene No. | 类别 Category | 定位 Position | 生物学功能 Biological function | 参考文献 Reference |
---|---|---|---|---|---|
OsHsfA2a | LOC_Os03g53340 | A类 | 染色体:3 | 抗氧化胁迫 | [ |
OsHsfA2b | LOC_Os07g08140 | A类 | 染色体:7 | 抗高盐 | [ |
OsHsfA2c | LOC_Os10g28340 | A类 | 染色体:10 | 抗高盐 | [ |
OsHsfA2d | LOC_Os03g06630 | A类 | 染色体:3 | 耐热 | [ |
OsHsfA2e | LOC_Os03g58160 | A类 | 染色体:3 | 耐热 | [ |
OsHsfA2f | LOC_Os06g36930 | A类 | 染色体:6 | 抗氧化胁迫 | [ |
OsHsfA3 | LOC_Os02g32590 | A类 | 染色体:2 | 抗寒 | [ |
OsHsfA4a | LOC_Os01g54550 | A类 | 染色体:1 | 抗氧化胁迫、增强镉耐受性 | [ |
OsHsfA4b | LOC_Os01g54550 | A类 | 染色体:1 | 抗高盐 | [ |
OsHsfA4d | LOC_Os05g45410 | A类 | 染色体:5 | 抗寒、抑制水稻叶片假斑病 | [ |
OsHsfA5 | LOC_Os02g29340 | A类 | 染色体:2 | 抗高盐 | [ |
OsHsfA7 | LOC_Os01g39020 | A类 | 染色体:1 | 抗高盐、抗寒、抗氧化胁迫、抗干旱 | [ |
OsHsfA9 | LOC_Os03g12370 | A类 | 染色体:3 | 抗高盐、抗寒 | [ |
OsHsf18 | 无 | A类 | 染色体:7 | 耐热、抗寒、抗干旱、抗高盐、抗白叶枯病、参与调控水稻农艺性状 | [ |
OsHsfB2b | LOC_Os08g43334 | B类 | 染色体:8 | 不抗干旱、不耐高盐 | [ |
OsHsfB4b | LOC_Os07g44690 | B类 | 染色体:7 | 抗寒、抗氧化胁迫 | [ |
OsHsfB4d | LOC_Os03g25120 | B类 | 染色体:3 | 抗细菌性条斑病 | [ |
OsHsfB2c2 | 无 | B类 | 无定位 | 抗白叶枯病 | [ |
OsHsf23 | LOC_Os09g28354 | B类 | 染色体:9 | 抑制稻瘟病菌 | [ |
OsHsfC1b | LOC_Os01g53220 | C类 | 染色体:1 | 抗寒、抗高盐 | [ |
[1] | Scharf KD, Berberich T, Ebersberger I, et al. The plant heat stress transcription factor(Hsf)family:Structure, function and evolution[J]. Biochimica et Biophysica Acta:BBA - Gene Regulatory Mechanisms, 2012, 1819(2):104-119. |
[2] | Guo M, Liu JH, Ma X, et al. The plant heat stress transcription factors(HSFs):structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 2016, 7:114. |
[3] |
Wan XL, Yang J, Guo C, et al. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress[J]. PeerJ, 2019, 7:e7312.
doi: 10.7717/peerj.7312 URL |
[4] |
Lin YX, Jiang HY, Chu ZX, et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize[J]. BMC Genomics, 2011, 12:76.
doi: 10.1186/1471-2164-12-76 URL |
[5] |
Döring P, Treuter E, Kistner C, et al. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2[J]. The Plant Cell, 2000, 12(2):265-278.
doi: 10.1105/tpc.12.2.265 URL |
[6] |
Wu C. Heat shock transcription factors:structure and regulation[J]. Annual Review of Cell and Developmental Biology, 1995, 11:441-469.
doi: 10.1146/cellbio.1995.11.issue-1 URL |
[7] |
Nover L, Scharf KD, Gagliardi D, et al. The Hsf world:classification and properties of plant heat stress transcription factors[J]. Cell Stress & Chaperones, 1996, 1(4):215-223.
doi: 10.1379/1466-1268(1996)001<0215:THWCAP>2.3.CO;2 URL |
[8] | 王国栋, 孔凡英, 孟庆伟. 番茄热激转录因子研究进展[J]. 植物生理学报, 2013, 49(3):217-224. |
Wang GD, Kong FY, Meng QW. Research advancement of heat shock factors in tomato[J]. Plant Physiology Journal, 2013, 49(3):217-224. | |
[9] |
Peteranderl R, Rabenstein M, Shin YK, et al. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor[J]. Biochemistry, 1999, 38(12):3559-3569.
pmid: 10090742 |
[10] |
Nover L, Bharti K, Döring P, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress & Chaperones, 2001, 6(3):177-189.
doi: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2 URL |
[11] |
Kotak S, Port M, Ganguli A, et al. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors(Hsfs)and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization[J]. The Plant Journal, 2004, 39(1):98-112.
doi: 10.1111/tpj.2004.39.issue-1 URL |
[12] |
Heerklotz D, Döring P, Bonzelius F, et al. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2[J]. Molecular and Cellular Biology, 2001, 21(5):1759-1768.
pmid: 11238913 |
[13] |
von Koskull-Döring P, Scharf KD, Nover L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science, 2007, 12(10):452-457.
pmid: 17826296 |
[14] |
Mittal D, Chakrabarti S, Sarkar A, et al. Heat shock factor gene family in rice:Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiology and Biochemistry, 2009, 47(9):785-795.
doi: 10.1016/j.plaphy.2009.05.003 URL |
[15] |
Liu AL, Zou J, Zhang XW, et al. Expression profiles of class A rice heat shock transcription factor genes under abiotic stresses[J]. Journal of Plant Biology, 2010, 53(2):142-149.
doi: 10.1007/s12374-010-9099-6 URL |
[16] |
Cheng Q, Zhou Y, Liu Z, et al. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice[J]. Plant Biology, 2015, 17(2):419-429.
doi: 10.1111/plb.12267 pmid: 25255693 |
[17] | 杨双蕾. 水稻OsHsfA2e基因的克隆、遗传转化与功能分析[D]. 长春:吉林大学, 2016. |
Yang SL. Cloning, transformation and functional analysis of OsHsfA2e gene in rice[D]. Changchun:Jilin University, 2016. | |
[18] |
Chauhan H, Khurana N, Agarwal P, et al. Heat shock factors in rice(Oryza sativa L. ):genome-wide expression analysis during reproductive development and abiotic stress[J]. Molecular Genetics and Genomics, 2011, 286(2):171-187.
doi: 10.1007/s00438-011-0638-8 pmid: 21792744 |
[19] | 党姣, 蒋明义, 林凡. ABA上调水稻叶片中OsHsf基因的表达[J]. 南京农业大学学报, 2010, 33(1):11-15. |
Dang J, Jiang MY, Lin F. ABA up-regulates the expression of OsHsf genes in leaves of rice plants[J]. Journal of Nanjing Agricultural University, 2010, 33(1):11-15. | |
[20] |
Shim D, Hwang JU, Lee J, et al. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J]. The Plant Cell, 2009, 21(12):4031-4043.
doi: 10.1105/tpc.109.066902 URL |
[21] |
Huang QN, Shi YF, Yang Y, et al. Characterization and genetic analysis of a light- and temperature-sensitive spotted-leaf mutant in rice[J]. Journal of Integrative Plant Biology, 2011, 53(8):671-681.
doi: 10.1111/jipb.2011.53.issue-8 URL |
[22] |
Liu AL, Zou J, Liu CF, et al. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice[J]. BMB Reports, 2013, 46(1):31-36.
doi: 10.5483/BMBRep.2013.46.1.090 URL |
[23] |
Xiang JH, Ran J, Zou J, et al. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice[J]. Plant Cell Reports, 2013, 32(11):1795-1806.
doi: 10.1007/s00299-013-1492-4 URL |
[24] |
Mittal D, Madhyastha DA, Grover A. Gene expression analysis in response to low and high temperature and oxidative stresses in rice:Combination of stresses evokes different transcriptional changes as against stresses applied individually[J]. Plant Science, 2012, 197:102-113.
doi: 10.1016/j.plantsci.2012.09.008 URL |
[25] | 覃瀚仪. 水稻热激转录因子OsHSF18调控水稻抗逆性的功能研究[D]. 长沙:湖南农业大学, 2015. |
Qin HY. Functions of heat shock transcription factor OsHSF18 in regulating rice stress resistance[D]. Changsha:Hunan Agricultural University, 2015. | |
[26] | 李丽. 水稻热激转录因子OsHsf18调控植物抗生物胁迫与非生物胁迫的功能机制研究[D]. 长沙:湖南农业大学, 2018. |
Li L. The functional mechanism of rice heat shock transcription factor OsHsf18 on regulating plant resistance against biotic and abiotic stresses[D]. Changsha:Hunan Agricultural University, 2018. | |
[27] | 冉静. 水稻OsHsfB2b基因功能的初步研究和OsbZIP74基因的载体构建及遗传转化[D]. 长沙:湖南农业大学, 2012. |
Ran J. Preliminary functional characterization of OsHsfB2b and vector construction and genetic transformation of OsbZIP74Genes in rice[D]. Changsha:Hunan Agricultural University, 2012. | |
[28] | Yang W, Ju YH, Zuo LP, et al. OsHsfB4d binds the promoter and regulates the expression of OsHsp18. 0-CI to resistant against Xanthomonas oryzae[J]. Rice:New York, N Y, 2020, 13(1):28. |
[29] | 封雷. 热激转录因子和XooIARP在水稻抗白叶枯病中作用的初探[D]. 金华:浙江师范大学, 2011. |
Feng L. The roles of heat shock factors and XooIARP in resistance to bacterial blight in rice[D]. Jinhua:Zhejiang Normal University, 2011. | |
[30] |
Tanabe S, Onodera H, Hara N, et al. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(1):145-151.
doi: 10.1080/09168451.2015.1075866 URL |
[31] | Schmidt R, Schippers JHM, Welker A, et al. Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. Japonica[J]. AoB Plants, 2012, 2012: pls011. |
[32] |
Pezeshki SR, Ernst WHO, Chabbi A. The dedicated issue of Environmental and Experimental Botany[J]. Environmental and Experimental Botany, 2001, 46(3):191-193.
doi: 10.1016/S0098-8472(01)00098-3 URL |
[33] |
Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, et al. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synjournal of raffinose family oligosaccharides in Arabidopsis[J]. Plant Physiology, 2004, 136(2):3148-3158.
pmid: 15466240 |
[34] | 张新, 李明娟, 张斌, 等. 水稻PHD-finger转录因子基因OsMsr16增强耐盐性的可能性研究[J]. 基因组学与应用生物学, 2016, 35(7):1820-1827. |
Zhang X, Li MJ, Zhang B, et al. Possibility study on improving salt tolerance of rice by overexpressing PHD-finger transcription factor gene OsMsr16[J]. Genomics and Applied Biology, 2016, 35(7):1820-1827. | |
[35] |
Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress[J]. Physiologia Plantarum, 2008, 133(3):481-489.
doi: 10.1111/j.1399-3054.2008.01090.x URL |
[36] | 王永平, 杨万荣, 廖芳芳, 等. 镉低积累作物筛选及其与超富集植物间套作应用进展[J]. 广东农业科学, 2015, 42(24):92-98. |
Wang YP, Yang WR, Liao FF, et al. Advances on screening of Cd low-accumulation crops and its intercropping with hyperaccumulator[J]. Guangdong Agricultural Sciences, 2015, 42(24):92-98. | |
[37] | 李新瑞, 张曦, 张正光, 等. 转录因子MoMsn2的核定位和核输出信号序列参与调控稻瘟病菌的生长发育和致病力[J]. 植物病理学报, 2018, 48(6):778-786. |
Li XR, Zhang X, Zhang ZG, et al. The nuclear localization and nuclear export signal sequences of the transcription factor MoMsn2 are important for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. Acta Phytopathologica Sinica, 2018, 48(6):778-786. | |
[38] |
Kaku H, Nishizawa Y, Ishii-Minami N, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. PNAS, 2006, 103(29):11086-11091.
doi: 10.1073/pnas.0508882103 URL |
[39] |
Shimizu T, Nakano T, Takamizawa D, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010, 64(2):204-214.
doi: 10.1111/j.1365-313X.2010.04324.x pmid: 21070404 |
[40] |
Kouzai Y, Mochizuki S, Nakajima K, et al. Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice[J]. Molecular Plant-Microbe Interactions, 2014, 27(9):975-982.
doi: 10.1094/MPMI-03-14-0068-R URL |
[41] |
Niño-Liu DO, Ronald PC, Bogdanove AJ. Xanthomonas oryzae pathovars:model pathogens of a model crop[J]. Molecular Plant Pathology, 2006, 7(5):303-324.
doi: 10.1111/j.1364-3703.2006.00344.x pmid: 20507449 |
[42] | 匡洁, 胡海涛, 张维林, 等. 比较12个OsHsfs在抗感水稻品种响应白叶枯病菌中的表达[J]. 热带作物学报, 2013, 34(1):125-129. |
Kuang J, Hu HT, Zhang WL, et al. Comparative expression analysis of twelve OsHsfs in resistant and susceptible rice to bacterial blight[J]. Chinese Journal of Tropical Crops, 2013, 34(1):125-129. | |
[43] |
Yang W, Zhang BG, Qi GH, et al. Identification of the phytosulfokine receptor 1(OsPSKR1)confers resistance to bacterial leaf streak in rice[J]. Planta, 2019, 250(5):1603-1612.
doi: 10.1007/s00425-019-03238-8 pmid: 31388828 |
[44] |
Hummel AW, Wilkins KE, Wang L, et al. A transcription activator-like effector from Xanthomonas oryzae pv. oryzicola elicits dose-dependent resistance in rice[J]. Molecular Plant Pathology, 2017, 18(1):55-66.
doi: 10.1111/mpp.12377 pmid: 26821568 |
[45] |
Ju YH, Tian HJ, Zhang RH, et al. Overexpression of OsHSP18. 0-CI enhances resistance to bacterial leaf streak in rice[J]. Rice, 2017, 10(1):1-11.
doi: 10.1186/s12284-016-0141-2 URL |
[46] |
Wu CJ, Bordeos A, Madamba MRS, et al. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics and Genomics, 2008, 279(6):605-619.
doi: 10.1007/s00438-008-0337-2 URL |
[47] |
Huang QN, Yang Y, Shi YF, et al. Spotted-leaf mutants of rice(Oryza sativa)[J]. Rice Science, 2010, 17(4):247-256.
doi: 10.1016/S1672-6308(09)60024-X URL |
[48] |
Yamanouchi U, Yano M, Lin HX, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7530-7535.
pmid: 12032317 |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[3] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[4] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[5] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[6] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[7] | LI Yi-jun, WU Chen-chen, LI Rui, WANG Zhe, HE Shan-wen, WEI Shan-jun, ZHANG Xiao-xia. Exploring Cultivation Approaches for New Endophytic Bacterial Resource in Oryza sativa [J]. Biotechnology Bulletin, 2023, 39(4): 201-211. |
[8] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[9] | LU Zhen-wan, LI Xue-qi, HUANG Jin-guang, ZHOU Huan-bin. Creation of Glyphosate-tolerant Rice by Cytosine Base Editing [J]. Biotechnology Bulletin, 2023, 39(2): 63-69. |
[10] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[11] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[12] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[13] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[14] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[15] | GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 252-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||