Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (11): 237-247.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0048
Previous Articles Next Articles
YANG Tian-jie1(), ZHANG Ling-xin1, GU Shao-hua1, PAN Zi-hao2, JIANG Gao-fei1, WANG Shi-mei1, WEI Zhong1, XU Yang-chun2(), SHEN Qi-rong1
Received:
2021-01-12
Online:
2021-11-26
Published:
2021-12-03
Contact:
XU Yang-chun
E-mail:tjyang@njau.edu.cn;ycxu@njau.edu.cn
YANG Tian-jie, ZHANG Ling-xin, GU Shao-hua, PAN Zi-hao, JIANG Gao-fei, WANG Shi-mei, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Effects on Pathogen Inactivation at the Thermophilic Stage of Aerobic Composting and Its Impact Factors[J]. Biotechnology Bulletin, 2021, 37(11): 237-247.
样品编号 Sample No. | 生产原料 Raw materials | 堆肥工艺 Composting process | 堆肥时间 Composting time/d |
---|---|---|---|
1 | 牛粪、秸秆、营养剂Cow manure, straws, nutrient | 条垛式堆肥Windrow composting | 15-21 |
2 | 畜禽粪便、秸秆Livestock manure, straws | 条垛式堆肥Windrow composting | 15-21 |
3 | 牛粪、稻壳、猪粪Cow manure, rice husk, pig manure | 槽式堆肥Trough composting | >30 |
4 | 牛粪、秸秆Cow manure, straws | 条垛式堆肥Windrow composting | >30 |
5 | 牛粪、米糠、草木灰Cow manure, rice bran, plant ash | 条垛式堆肥Windrow composting | <15 |
6 | 牛粪、米糠、发酵菌Cow manure, rice bran, fermented microbe | 条垛式堆肥Windrow composting | 22-30 |
7 | 沼渣、猪粪、鸡粪、菇渣、甜叶菊渣Biogas residues, pig manure, chicken manure, mushroom residues, stevia residues | 条垛式堆肥Windrow composting | >30 |
8 | 鸡粪、羊粪Chicken manure, sheep manure | 静态通气堆肥Static aeration composting | 22-30 |
9 | 菌菇渣、牛粪、糠醛渣、梨渣Mushroom residues, cow manure, furfural residues, pear residues | 条垛式堆肥Windrow composting | 22-30 |
10 | 木薯渣、牛粪、菌菇渣Cassava residues, cow manure, mushroom residues | 条垛式堆肥Windrow composting | >30 |
11 | 木薯渣、鸡粪、菌菇渣Cassava residues, chicken manure, mushroom residues | 条垛式堆肥Windrow composting | 15-21 |
12 | 菌菇渣、羊粪、秸秆、猪粪、草木灰Mushroom residues, sheep manure, straws, pig manure, plant ash | 条垛式堆肥Windrow composting | >30 |
13 | 牛粪、木薯渣、猪粪、氨基酸Cow manure, cassava residue, pig manure, amino acids | 条垛式堆肥Windrow composting | 15-21 |
14 | 牛粪、糠醛渣、蘑菇渣、骨粉Cow manure, furfural residues, mushroom residues, bone meal | 条垛式堆肥Windrow composting | >30 |
15 | 鸡粪、稻壳、秸秆Chicken manure, rice husk, straws | 条垛式堆肥Windrow composting | 15-21 |
16 | 畜禽粪便、菌渣Livestock manure, bacterial residues | 条垛式堆肥Windrow composting | <15 |
17 | 鲜鸡粪、垫料鸡粪Fresh chicken manure, litter chicken manure | 条垛式堆肥Windrow composting | 22-30 |
18 | 畜禽粪便、食用菌培养棒Livestock manure, edible fungus culture sticks | 条垛式堆肥Windrow composting | 20-25 |
Table 1 Information of commercial organic fertilizers
样品编号 Sample No. | 生产原料 Raw materials | 堆肥工艺 Composting process | 堆肥时间 Composting time/d |
---|---|---|---|
1 | 牛粪、秸秆、营养剂Cow manure, straws, nutrient | 条垛式堆肥Windrow composting | 15-21 |
2 | 畜禽粪便、秸秆Livestock manure, straws | 条垛式堆肥Windrow composting | 15-21 |
3 | 牛粪、稻壳、猪粪Cow manure, rice husk, pig manure | 槽式堆肥Trough composting | >30 |
4 | 牛粪、秸秆Cow manure, straws | 条垛式堆肥Windrow composting | >30 |
5 | 牛粪、米糠、草木灰Cow manure, rice bran, plant ash | 条垛式堆肥Windrow composting | <15 |
6 | 牛粪、米糠、发酵菌Cow manure, rice bran, fermented microbe | 条垛式堆肥Windrow composting | 22-30 |
7 | 沼渣、猪粪、鸡粪、菇渣、甜叶菊渣Biogas residues, pig manure, chicken manure, mushroom residues, stevia residues | 条垛式堆肥Windrow composting | >30 |
8 | 鸡粪、羊粪Chicken manure, sheep manure | 静态通气堆肥Static aeration composting | 22-30 |
9 | 菌菇渣、牛粪、糠醛渣、梨渣Mushroom residues, cow manure, furfural residues, pear residues | 条垛式堆肥Windrow composting | 22-30 |
10 | 木薯渣、牛粪、菌菇渣Cassava residues, cow manure, mushroom residues | 条垛式堆肥Windrow composting | >30 |
11 | 木薯渣、鸡粪、菌菇渣Cassava residues, chicken manure, mushroom residues | 条垛式堆肥Windrow composting | 15-21 |
12 | 菌菇渣、羊粪、秸秆、猪粪、草木灰Mushroom residues, sheep manure, straws, pig manure, plant ash | 条垛式堆肥Windrow composting | >30 |
13 | 牛粪、木薯渣、猪粪、氨基酸Cow manure, cassava residue, pig manure, amino acids | 条垛式堆肥Windrow composting | 15-21 |
14 | 牛粪、糠醛渣、蘑菇渣、骨粉Cow manure, furfural residues, mushroom residues, bone meal | 条垛式堆肥Windrow composting | >30 |
15 | 鸡粪、稻壳、秸秆Chicken manure, rice husk, straws | 条垛式堆肥Windrow composting | 15-21 |
16 | 畜禽粪便、菌渣Livestock manure, bacterial residues | 条垛式堆肥Windrow composting | <15 |
17 | 鲜鸡粪、垫料鸡粪Fresh chicken manure, litter chicken manure | 条垛式堆肥Windrow composting | 22-30 |
18 | 畜禽粪便、食用菌培养棒Livestock manure, edible fungus culture sticks | 条垛式堆肥Windrow composting | 20-25 |
病原菌Pathogen | 堆体Pile | 堆肥时间Composting time/d | OTU数量OTU abundance |
---|---|---|---|
白葡萄球菌 Saccharopolyspora rectivirgula | A | 0 | 176.0±83.44 a |
8 | 1.33±1.15 b | ||
B | 0 | 27.0±6.0 a | |
8 | 1.0±0 b | ||
鹿角球菌 Vagococcus lutrae | A | 0 | 4.5±2.12 a |
8 | 1.33±1.53 a | ||
B | 0 | 75.33±3.21 a | |
8 | 0 b | ||
Paenalcaligenes hominis | A | 0 | 0 |
8 | 0 | ||
B | 0 | 22.67±8.08 a | |
8 | 3.67±2.31 b | ||
鲍曼不动杆菌 Acinetobacter baumannii | A | 0 | 26±12.73 a |
8 | 0 b | ||
B | 0 | 6.0±3.61 a | |
8 | 0 b | ||
深红沙雷氏菌 Serratia rubidaea | A | 0 | 29.5±6.36 a |
8 | 0 b | ||
B | 0 | 2.0±1.0 a | |
8 | 0.33±0.58 a | ||
Chitinophaga terrae | A | 0 | 23.5±28.99 a |
8 | 0 a | ||
B | 0 | 0.67±0.58 a | |
8 | 0 a | ||
大肠埃希-志贺氏菌 Escherichia-Shigella | A | 0 | 15.5±0.71 a |
8 | 0 b | ||
B | 0 | 3.0±2.65 a | |
8 | 0 a | ||
纤维化纤维微细菌 Cellulosimicrobium cellulans | A | 0 | 6.0±5.65 a |
8 | 0.33±0.58 a | ||
B | 0 | 5.33±2.31 a | |
8 | 0 b | ||
嗜麦芽窄食单胞菌 Stenotrophomonas maltophilia | A | 0 | 13.5±3.54 a |
8 | 0 b | ||
B | 0 | 0.33±0.58 a | |
8 | 0 a | ||
抗热分枝杆菌 Mycobacterium thermoresistibile | A | 0 | 2.0±0 a |
8 | 2.0±3.46 a | ||
B | 0 | 0 a | |
8 | 0.33±0.58 a | ||
Pandoraea pnomenusa | A | 0 | 4.0±1.41 a |
8 | 0 b | ||
B | 0 | 0.67±0.58 a | |
8 | 0 a | ||
格氏李斯特菌 Listeria grayi | A | 0 | 2.5±0.71 a |
8 | 0 b | ||
B | 0 | 0.33±0.58 a | |
8 | 0 a |
Table 2 Changes of potential pathogen OTUs during composting process
病原菌Pathogen | 堆体Pile | 堆肥时间Composting time/d | OTU数量OTU abundance |
---|---|---|---|
白葡萄球菌 Saccharopolyspora rectivirgula | A | 0 | 176.0±83.44 a |
8 | 1.33±1.15 b | ||
B | 0 | 27.0±6.0 a | |
8 | 1.0±0 b | ||
鹿角球菌 Vagococcus lutrae | A | 0 | 4.5±2.12 a |
8 | 1.33±1.53 a | ||
B | 0 | 75.33±3.21 a | |
8 | 0 b | ||
Paenalcaligenes hominis | A | 0 | 0 |
8 | 0 | ||
B | 0 | 22.67±8.08 a | |
8 | 3.67±2.31 b | ||
鲍曼不动杆菌 Acinetobacter baumannii | A | 0 | 26±12.73 a |
8 | 0 b | ||
B | 0 | 6.0±3.61 a | |
8 | 0 b | ||
深红沙雷氏菌 Serratia rubidaea | A | 0 | 29.5±6.36 a |
8 | 0 b | ||
B | 0 | 2.0±1.0 a | |
8 | 0.33±0.58 a | ||
Chitinophaga terrae | A | 0 | 23.5±28.99 a |
8 | 0 a | ||
B | 0 | 0.67±0.58 a | |
8 | 0 a | ||
大肠埃希-志贺氏菌 Escherichia-Shigella | A | 0 | 15.5±0.71 a |
8 | 0 b | ||
B | 0 | 3.0±2.65 a | |
8 | 0 a | ||
纤维化纤维微细菌 Cellulosimicrobium cellulans | A | 0 | 6.0±5.65 a |
8 | 0.33±0.58 a | ||
B | 0 | 5.33±2.31 a | |
8 | 0 b | ||
嗜麦芽窄食单胞菌 Stenotrophomonas maltophilia | A | 0 | 13.5±3.54 a |
8 | 0 b | ||
B | 0 | 0.33±0.58 a | |
8 | 0 a | ||
抗热分枝杆菌 Mycobacterium thermoresistibile | A | 0 | 2.0±0 a |
8 | 2.0±3.46 a | ||
B | 0 | 0 a | |
8 | 0.33±0.58 a | ||
Pandoraea pnomenusa | A | 0 | 4.0±1.41 a |
8 | 0 b | ||
B | 0 | 0.67±0.58 a | |
8 | 0 a | ||
格氏李斯特菌 Listeria grayi | A | 0 | 2.5±0.71 a |
8 | 0 b | ||
B | 0 | 0.33±0.58 a | |
8 | 0 a |
堆体理化性质 Physico-chemical properties | 病原菌数量Pathogen abundance | |||
---|---|---|---|---|
自由度 Df | F值 F value | P值 P value | ||
温度Temperature/℃ | 1 | 86.21 | < 0.001 | |
pH | 1 | 23.63 | < 0.01 | |
铵态氮含量 Ammonium content/(mg·g-1) | 1 | 0.12 | 0.74 | |
残差Residuals | 7 |
Table 3 Correlations between pathogen abundance and physico-chemical properties of composting piles
堆体理化性质 Physico-chemical properties | 病原菌数量Pathogen abundance | |||
---|---|---|---|---|
自由度 Df | F值 F value | P值 P value | ||
温度Temperature/℃ | 1 | 86.21 | < 0.001 | |
pH | 1 | 23.63 | < 0.01 | |
铵态氮含量 Ammonium content/(mg·g-1) | 1 | 0.12 | 0.74 | |
残差Residuals | 7 |
Fig.4 Effects of temperature on the biomass of two kinds of pathogens The asterisks in the figure indicate significant differences between different treatments (P < 0.05)
Fig.5 Effects of pH on the biomass of two kinds of pathogens Different letters on the column in the figure indicate significant differences between different treatments (P < 0.05), the same below
[1] | 李国学, 张祖锡, 白瑛. 高温堆肥和沤肥碳、氮转化和杀灭病原菌的比较研究[J]. 北京农业大学学报, 1995(3): 286-290. |
Li GX, Zhang ZX, Bai Y. The different effects of HTC and WC on C, N transformation and pathogenic bacterial population[J]. Acta Agric Univ Pekin, 1995(3): 286-290. | |
[2] | 李金萍. 十字花科蔬菜根肿病菌检测技术及畜禽粪便传播病原菌研究[D]. 北京:中国农业科学院, 2013. |
Li JP. Studies on the detection technology of Plasmodiophora brassicae and animal manure as a transmission route of the pathogen[D]. Beijing:Chinese Academy of Agricultural Sciences, 2013. | |
[3] | 韦智获, 苏敏, 张凌云, 等. 不同有机肥对茶叶生长和土壤物理性质的影响[J]. 安徽农业科学, 2020, 48(13): 159-161, 178. |
Wei ZH, Su M, Zhang LY, et al. Effects of different orgainc fertilizers on tea growth and soil physical properties[J]. J Anhui Agric Sci, 2020, 48(13): 159-161, 178. | |
[4] | 郭鹏飞, 闫鹏科, 孙权. 有机肥施用量对‘赤霞珠’产量和品质的影响[J]. 湖南农业大学学报:自然科学版, 2020, 46(3): 303-309. |
Guo PF, Yan PK, Sun Q. Effect of the amount of organic fertilizer on the yield and quality of ‘Cabernet Sauvignon’[J]. J Hunan Agric Univ:Nat Sci, 2020, 46(3): 303-309. | |
[5] |
Soobhany N, Mohee R, Garg VK. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals:a review[J]. Waste Manag, 2017, 64: 51-62.
doi: 10.1016/j.wasman.2017.03.003 URL |
[6] |
Vaddella V, Pandey P, Cao WL, et al. Assessment of pathogen inactivation under sub-composting temperature in lab-scale compost piles[J]. J Food Res, 2018, 7(3): 64.
doi: 10.5539/jfr.v7n3p64 URL |
[7] |
Bradford SA, Morales VL, Zhang W, et al. Transport and fate of microbial pathogens in agricultural settings[J]. Crit Rev Environ Sci Technol, 2013, 43(8): 775-893.
doi: 10.1080/10643389.2012.710449 URL |
[8] |
Gurtler JB, Doyle MP, Erickson MC, et al. Composting to inactivate foodborne pathogens for crop soil application:a review[J]. J Food Prot, 2018, 81(11): 1821-1837.
doi: 10.4315/0362-028X.JFP-18-217 URL |
[9] |
Jiang XP, Morgan J, Doyle MP. Fate of Escherichia coli O157:H7 during composting of bovine manure in a laboratory-scale bioreactor[J]. J Food Prot, 2003, 66(1): 25-30.
doi: 10.4315/0362-028X-66.1.25 URL |
[10] |
Hijikata N, Tezuka R, Kazama S, et al. Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash[J]. J Environ Manag, 2016, 181: 721-727.
doi: 10.1016/j.jenvman.2016.08.026 URL |
[11] |
Erickson MC, Liao J, Jiang XP, et al. Inactivation of pathogens during aerobic composting of fresh and aged dairy manure and different carbon amendments[J]. J Food Prot, 2014, 77(11): 1911-1918.
doi: 10.4315/0362-028X.JFP-14-194 URL |
[12] |
Erickson MC, Liao JY. Exploratory study of the application of smoke aerosols to manure-based composting materials to reduce prevalence of Salmonella[J]. J Food Prot, 2019, 82(5): 804-809.
doi: 10.4315/0362-028X.JFP-18-327 URL |
[13] |
Wei Z, Huang JF, Tan SY, et al. The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato[J]. Biol Control, 2013, 65(2): 278-285.
doi: 10.1016/j.biocontrol.2012.12.010 URL |
[14] |
Wagner AO, Praeg N, Reitschuler C, et al. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide(EMA)/propidium monoazide(PMA)treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil[J]. Appl Soil Ecol, 2015, 93: 56-64.
doi: 10.1016/j.apsoil.2015.04.005 URL |
[15] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000. | |
[16] |
Larney FJ, Turkington TK. Fate of Fusarium graminearum and other Fusarium species during composting of beef cattle feedlot manure[J]. Compost Sci Util, 2009, 17(4): 247-256.
doi: 10.1080/1065657X.2009.10702431 URL |
[17] |
Weil JD, Cutter CN, Beelman RB, et al. Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate[J]. J Food Prot, 2013, 76(8): 1393-1400.
doi: 10.4315/0362-028X.JFP-12-508 URL |
[18] |
Wichuk KM, McCartney D. A review of the effectiveness of current time-temperature regulations on pathogen inactivation during composting[J]. J Environ Eng Sci, 2007, 6(5): 573-586.
doi: 10.1139/S07-011 URL |
[19] | 廖汉鹏, 陈志, 余震, 等. 有机固体废物超高温好氧发酵技术及其工程应用[J]. 福建农林大学学报:自然科学版, 2017, 46(4): 439-444. |
Liao HP, Chen Z, Yu Z, et al. Development of hperthermophinic aerobic composting and its engineering applications in organic solid wastes[J]. J Fujian Agric For Univ:Nat Sci Ed, 2017, 46(4): 439-444. | |
[20] | Cronjé AL. Ammonia emissions and pathogen inactivation during controlled composting of pig manure[D]. Birmingham:University of Birmingham, 2004. |
[21] |
Singh R, Kim J, Jiang X. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process[J]. J Appl Microbiol, 2012, 112(5): 927-935.
doi: 10.1111/j.1365-2672.2012.05268.x pmid: 22372919 |
[22] | 杨琼, 廖森泰, 邢东旭, 等. 改良蚕沙静态好氧堆肥的发酵温度及对家蚕病原菌的灭活效果[J]. 蚕业科学, 2012, 38(6): 1018-1023. |
Yang Q, Liao ST, Xing DX, et al. Fermentation temperature of improved silkworm excrement static aerobic composting and effect on silkworm pathogen inactivation[J]. Sci Seric, 2012, 38(6): 1018-1023. | |
[23] |
Xu Y, Zhao Z, Tong WH, et al. An acid-tolerance response system protecting exponentially growing Escherichia coli[J]. Nat Commun, 2020, 11: 1496.
doi: 10.1038/s41467-020-15350-5 URL |
[24] |
Li S, Liu Y, Wang J, et al. Soil acidification aggravates the occurrence of bacterial wilt in South China[J]. Front Microbiol, 2017, 8: 703.
doi: 10.3389/fmicb.2017.00703 URL |
[25] |
McKinley JW, Parzen RE, Mercado Guzmán Á. Ammonia inactivation of Ascaris ova in ecological compost by using urine and ash[J]. Appl Environ Microbiol, 2012, 78(15): 5133-5137.
doi: 10.1128/AEM.00631-12 URL |
[26] | 白同日格. 牛粪堆肥中添加石灰氮对金黄色葡萄球菌的杀灭效果及堆肥发酵影响的研究[D]. 呼和浩特:内蒙古农业大学, 2011. |
Bai T. The effect of adding lime nitrogen to cattle manure composting on killing impact of S. aureus and composting[D]. Hohhot:Inner Mongolia Agricultural University, 2011. | |
[27] |
Usui M, Kawakura M, Yoshizawa N, et al. Survival and prevalence of Clostridium difficile in manure compost derived from pigs[J]. Anaerobe, 2017, 43: 15-20.
doi: 10.1016/j.anaerobe.2016.11.004 URL |
[28] |
Erickson MC, Liao J, Ma L, et al. Inactivation of Salmonella spp. in cow manure composts formulated to different initial C:N ratios[J]. Bioresour Technol, 2009, 100(23): 5898-5903.
doi: 10.1016/j.biortech.2009.06.083 URL |
[29] |
Singh R, Kim J, Shepherd MW, et al. Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process[J]. Appl Environ Microbiol, 2011, 77(12): 4126-4135.
doi: 10.1128/AEM.02873-10 URL |
[1] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
[2] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[3] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[4] | XU Xiao-wen, LI Jin-cang, HAI Du, ZHA Yu-ping, SONG Fei, WANG Yi-xun. Identification and Diversity Analysis of Mycoviruses from the Phytopathogenic Fungus Colletotrichum spp. of Walnut [J]. Biotechnology Bulletin, 2023, 39(3): 278-289. |
[5] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[6] | WANG Feng-ting, WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang. Isolation and Identification of Saline-alkali Tolerant Aspergillus terreus SYAT-1 and Its Activities Against Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(2): 203-210. |
[7] | WAN Qi-wu, BAO Xu-dong, DING Ke, MOU Hua-ming, LUO Yang. Research Progress in Microfluidic Technology in the Detection of Pathogenic Microorganisms [J]. Biotechnology Bulletin, 2023, 39(10): 107-114. |
[8] | HUANG Jia-yan, FENG Xiao-yan, SHEN Lin-bo, WANG Wen-zhi, HU Hai-yan, ZHANG Shu-zhen. Cloning of Sugarcane ShPR10 Gene and Study on the Interaction Between ShPR10 Protein and P1 Protein Encoded by Sugarcane Streak Mosaic Virus [J]. Biotechnology Bulletin, 2023, 39(10): 163-174. |
[9] | LIU Li-hui, CHU Jin-hua, SUI Yu-xin, CHEN Yang, CHENG Gu-yue. Research Progress of Main Virulence Factors in Salmonella [J]. Biotechnology Bulletin, 2022, 38(9): 72-83. |
[10] | ZHAO Jing-ya, PENG Meng-ya, ZHANG Shi-yu, SHAN Yi-xuan, XING Xiao-ping, SHI Yan, LI Hai-yang, YANG Xue, LI Hong-lian, CHEN Lin-lin. Role of C2H2 Zinc Finger Transcription Factor FpCzf7 in the Growth and Pathogenicity of Fusarium pseudograminearum [J]. Biotechnology Bulletin, 2022, 38(8): 216-224. |
[11] | CHEN Fu-nuan, HUANG Yu, CAI Jia, WANG Zhong-liang, JIAN Ji-chang, WANG Bei. Structure of ABC Transporter and Research Progress of It in Bacterial Pathogenicity [J]. Biotechnology Bulletin, 2022, 38(6): 43-52. |
[12] | DING Xiao-yan, WANG Yue, WANG Ning, LI Wan-ting, DING Guo-chun, LI Ji. Application of Exogenous Microbial Inoculum in the Composting of Kitchen Waste [J]. Biotechnology Bulletin, 2022, 38(5): 47-55. |
[13] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
[14] | ZHANG Chen, ZHANG Tong-tong, LIU Hai-ping. Screening and Identification of Ethylene-forming Enzymes with High Activity and Thermostability [J]. Biotechnology Bulletin, 2022, 38(11): 269-276. |
[15] | SUN Zhong-juan, LIU Qian-qian, GUO Yu-qian, WANG Guang-hui, WANG Chen-fang. Establishment of Analog-sensitive Protein Kinase Research System in Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2022, 38(11): 49-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||