Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (11): 225-236.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0288
Previous Articles Next Articles
LUO Ya-jun1(), SUN Hong-min2, HE Ning2, YUAN Li-jie1(), XIE Yun-ying2()
Received:
2021-03-11
Online:
2021-11-26
Published:
2021-12-03
Contact:
YUAN Li-jie,XIE Yun-ying
E-mail:592062203@qq.com;yuanlijie1970@163.com;xieyy@imb.pumc.edu.cn
LUO Ya-jun, SUN Hong-min, HE Ning, YUAN Li-jie, XIE Yun-ying. Isolation and Antibacterial Activity of Actinomycetes from the Nodules and Rhizosphere Soil of Hippophae rhamnoides in Tibet[J]. Biotechnology Bulletin, 2021, 37(11): 225-236.
采样地点 Sampling location | 样品种类 Sample type | 编号 No. | 海拔 Altitude/m | 采样时间 Sampling time | 坐标 Coordinates |
---|---|---|---|---|---|
林芝南伊沟区 | 沙棘根瘤 | P1 | 2 999 | 2019. 09. 21 | 29o08’25.15” N,94o12’58.71” E |
根际土壤 | E1 | 2 999 | 2019. 09. 21 | 29o08’25.15” N,94o12’58.71” E | |
山南市错那县 | 大沙棘根瘤 | P2 | 4 515 | 2019. 09. 23 | 28o18’48.24” N,91o49’06.59” E |
根际土壤 | E2 | 4 515 | 2019. 09. 23 | 28o18’48.24” N,91o49’06.59” E | |
山南市错那县 | 小沙棘根瘤 | P3 | 4 515 | 2019. 09. 23 | 28o18’48.24” N,91o49’06.59” E |
根际土壤 | E3 | 4 515 | 2019. 09. 23 | 28o18’48.24” N,91o49’06.59” E | |
山南市错那县 | 沙棘根瘤 | P4 | 4 255 | 2019. 09. 23 | 28o15’18.76” N,91o45’47.52” E |
根际土壤 | E4 | 4 255 | 2019. 09. 23 | 28o15’18.76” N,91o45’47.52” E | |
山南市隆子县 | 沙棘根瘤 | P5 | 3 915 | 2019. 09. 23 | 28o25’12.01” N,92o23’48.99” E |
根际土壤 | E5 | 3 915 | 2019. 09. 23 | 28o25’12.01” N,92o23’48.99” E |
Table 1 Sample collection information
采样地点 Sampling location | 样品种类 Sample type | 编号 No. | 海拔 Altitude/m | 采样时间 Sampling time | 坐标 Coordinates |
---|---|---|---|---|---|
林芝南伊沟区 | 沙棘根瘤 | P1 | 2 999 | 2019. 09. 21 | 29o08’25.15” N,94o12’58.71” E |
根际土壤 | E1 | 2 999 | 2019. 09. 21 | 29o08’25.15” N,94o12’58.71” E | |
山南市错那县 | 大沙棘根瘤 | P2 | 4 515 | 2019. 09. 23 | 28o18’48.24” N,91o49’06.59” E |
根际土壤 | E2 | 4 515 | 2019. 09. 23 | 28o18’48.24” N,91o49’06.59” E | |
山南市错那县 | 小沙棘根瘤 | P3 | 4 515 | 2019. 09. 23 | 28o18’48.24” N,91o49’06.59” E |
根际土壤 | E3 | 4 515 | 2019. 09. 23 | 28o18’48.24” N,91o49’06.59” E | |
山南市错那县 | 沙棘根瘤 | P4 | 4 255 | 2019. 09. 23 | 28o15’18.76” N,91o45’47.52” E |
根际土壤 | E4 | 4 255 | 2019. 09. 23 | 28o15’18.76” N,91o45’47.52” E | |
山南市隆子县 | 沙棘根瘤 | P5 | 3 915 | 2019. 09. 23 | 28o25’12.01” N,92o23’48.99” E |
根际土壤 | E5 | 3 915 | 2019. 09. 23 | 28o25’12.01” N,92o23’48.99” E |
培养基Culture medium | 培养基成分Medium composition |
---|---|
PDB | 成品,购于北京奥博星生物技术公司,pH 7.2 |
ISP 2 | 酵母膏4 g,麦芽糖10 g,葡萄糖4 g,pH 7.2 |
FM3 | 可溶性淀粉20 g,甘油5 g,脱脂小麦胚芽10 g,肉提取物3 g,干酵母3 g,CaCO3 3 g,pH 7.0 |
FM4 | 半乳糖3.3 g,水化糊精3.3 g,甘油1.7 g,豆胨1.7 g,玉米浆0.83 g,CaCO3 2 g,(NH4)2SO4 0.33 g,pH 7.0 |
FM5 | 葡萄糖10 g,牛肉膏10 g,蛋白胨1 g,NaCl 5 g,pH 7.0 |
M331 | 葡萄糖20 g,普通淀粉5 g,蛋白胨 10 g,(NH4)2SO4 7 g,CaCO3 2 g,pH自然 |
F1 | 普通淀粉20 g,葡萄糖20 g,蛋白胨3 g,牛肉膏3 g,微量元素1 mL,CaCO3 2 g,花生饼粉10 g,pH 7.2 |
M2 | 甘露醇40 g,麦芽浸粉40 g,酵母浸膏粉10 g,K2HPO4 2 g,MgSO4·7H2O 0.5 g,FeSO4·7H2O 0.01 g,pH 7.2 |
Cazpeck | K2HPO4 1 g,NaNO3 0.3 g,KCl 0.005 g,MgSO4·7H2O 0.005 g,FeSO4 0.001 g,蔗糖30 g,pH 7.0 |
FM10 | 甘油20 g,糖蜜10 g,酪蛋白5 g,蛋白胨1 g,CaCO3 4 g,pH 7.2 |
FM11 | 葡萄糖20 g,麦芽浸粉40 g,酵母浸粉4 g,K2HPO4 5 g,NaCl 2.5 g,CaCO3 0.4 g,ZnSO4 0.04 g,pH 6.0 |
YMS | 酵母浸粉4 g,麦芽浸粉10 g,可溶性淀粉4 g,pH 自然 |
Table 2 12 kinds of fermentation medium
培养基Culture medium | 培养基成分Medium composition |
---|---|
PDB | 成品,购于北京奥博星生物技术公司,pH 7.2 |
ISP 2 | 酵母膏4 g,麦芽糖10 g,葡萄糖4 g,pH 7.2 |
FM3 | 可溶性淀粉20 g,甘油5 g,脱脂小麦胚芽10 g,肉提取物3 g,干酵母3 g,CaCO3 3 g,pH 7.0 |
FM4 | 半乳糖3.3 g,水化糊精3.3 g,甘油1.7 g,豆胨1.7 g,玉米浆0.83 g,CaCO3 2 g,(NH4)2SO4 0.33 g,pH 7.0 |
FM5 | 葡萄糖10 g,牛肉膏10 g,蛋白胨1 g,NaCl 5 g,pH 7.0 |
M331 | 葡萄糖20 g,普通淀粉5 g,蛋白胨 10 g,(NH4)2SO4 7 g,CaCO3 2 g,pH自然 |
F1 | 普通淀粉20 g,葡萄糖20 g,蛋白胨3 g,牛肉膏3 g,微量元素1 mL,CaCO3 2 g,花生饼粉10 g,pH 7.2 |
M2 | 甘露醇40 g,麦芽浸粉40 g,酵母浸膏粉10 g,K2HPO4 2 g,MgSO4·7H2O 0.5 g,FeSO4·7H2O 0.01 g,pH 7.2 |
Cazpeck | K2HPO4 1 g,NaNO3 0.3 g,KCl 0.005 g,MgSO4·7H2O 0.005 g,FeSO4 0.001 g,蔗糖30 g,pH 7.0 |
FM10 | 甘油20 g,糖蜜10 g,酪蛋白5 g,蛋白胨1 g,CaCO3 4 g,pH 7.2 |
FM11 | 葡萄糖20 g,麦芽浸粉40 g,酵母浸粉4 g,K2HPO4 5 g,NaCl 2.5 g,CaCO3 0.4 g,ZnSO4 0.04 g,pH 6.0 |
YMS | 酵母浸粉4 g,麦芽浸粉10 g,可溶性淀粉4 g,pH 自然 |
Fig. 1 Phylogenetic tree of strain N-J based on gene sequences of representative strains of 16S rRNA genera The value at the bifurcation point is obtained by 1 000 times of self-xpanding analysis. Scale 0.020 evolution distance
Fig. 4 Antibacterial activities of fermentation products of 46 representative strains A:Staphylococcus aureus(ATCC 29213). B:Methicillin resistant S. aureus(MRSA)181223. C:Pseudomonas aeruginosa(ATCC 27853). D:Escherichia coli(ATCC 25922). E:Klebsiella pneumoniae(ATCC 700603). F:Carbapenem resistant Acinetobacter baumannii(crab)181236. G:Candida albicans(ATCC 10231). Heatmap:In the 96 well plates of 7 kinds of bacteria,the bacteria liquid fermented in 12 kinds of media was added to each well,and the growth time was 24 h. In the figure,green indicates good antibacterial activity,red indicates almost no antibacterial activity,and the transition from red to green to light purple green indicates that the fermentation broth has little or no antibacterial activity against the tested bacteria. The medium of 1-12 is PDB,ISP 2,FM3,FM4,FM5,M331,F1,M2,Cazpeck,FM10,FM11,and YMS
发酵菌株 Fermentation strain | 菌株发酵液对检定菌最大抑制率及发酵培养基 The maximum inhibition rate of fermentation broth to the tested bacteria and fermentation medium | ||||||
---|---|---|---|---|---|---|---|
金黄色葡萄球菌ATCC 29213 | 耐甲氧西林金黄色葡萄球菌MRSA 181223 | 铜绿假单胞菌 ATCC 27853 | 大肠埃希菌ATCC 25922 | 肺炎克雷伯菌ATCC 700603 | 耐碳青霉烯鲍曼不动杆菌 CRAB 181236 | 白色念珠菌ATCC 10231 | |
Streptomyces sp. XZ19-363 | 87.4%(FM4) | 82.7%(FM4) | 87.1%(FM4) | < 50% | 50.8%(FM4) | 91.3%(FM4) | < 50% |
Streptomyces sp. XZ19-323 | 86.9%(FM3) | 79.6%(FM3) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-034 | 84.6%(Cazpeck) | 73.1%(Cazpeck) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-175 | 86.2%(FM3) | 79.6%(FM3/FM4) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-147 | 86.4%(FM4) | 81.0%(FM4) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-130 | 88.8% (ISP 2) | 83.4%(ISP 2) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-336 | 88.1%(ISP 2) | 83.1%(ISP 2) | < 50% | < 50% | < 50% | < 50% | 78.9%(FM3) |
Streptomyces sp. XZ19-098 | 88.3%(FM3) | 82.7% (ISP 2/FM4) | < 50% | 72.6%(YMS) | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-152 | 84.1%(PDB) | 82.7%(FM4) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-091 | 88.1%(FM3) | 83.1%(FM4) | < 50% | < 50% | < 50% | < 50% | 83.8%(FM3) |
Streptomyces sp. XZ19-122 | 88.3%(FM3) | 83.4%(ISP 2) | < 50% | < 50% | < 50% | 53.0%(F1) | 84.1%(FM3) |
Streptomyces sp. XZ19-015 | 88.3% (ISP 2) | 83.7%(ISP 2) | < 50% | < 50% | < 50% | 64.4%(FM3) | 83.8%(FM4) |
Streptomyces sp. XZ19-030 | 88.3% (ISP 2) | 82.0%(FM4) | < 50% | < 50% | < 50% | < 0.5% | 81.0%(M2) |
Streptomyces sp. XZ19-036 | 87.4% (ISP 2) | 81.7%(ISP 2) | < 50% | < 50% | < 50% | < 0.5% | 85.0% (FM11) |
Streptomyces sp. XZ19-093 | < 50% | < 50% | < 50% | < 50% | < 50% | 55.1%(M331) | < 50% |
Streptomyces sp. XZ19-021 | < 50% | < 50% | < 50% | < 50% | < 50% | 55.7%(F1) | < 50% |
Streptomyces sp. XZ19-006 | 77.3%(M2) | 71.3%(M2) | < 50% | < 50% | < 50% | 51.2%(M331) | < 50% |
Streptomyces sp. XZ19-003 | 82.2%(YMS) | 65.5%(YMS) | < 50% | < 50% | < 50% | < 50% | < 50% |
Promicromonospora sp. XZ19-011 | < 50% | < 50% | < 50% | < 50% | < 50% | 73.9%(M331) | < 50% |
Micromonospora sp. XZ19-205 | 59.4%(YMS) | < 50% | < 50% | < 50% | < 50% | < 50% | < 50% |
美罗培南 | 87.1% | 9.50% | 91. 5% | 91.6% | 93.5% | 42.2% | - |
万古霉素 | 83.3% | 74.1% | -1.2% | 37.8% | 15.1% | 40.0% | - |
氟康唑 | - | - | - | - | - | - | 66.1% |
伊曲康唑 | - | - | - | - | - | - | 44.5% |
两性霉素B | - | - | - | - | - | - | 64.6% |
Table 3 Inhibition rate of fermentation extracts of some strains to the tested strains
发酵菌株 Fermentation strain | 菌株发酵液对检定菌最大抑制率及发酵培养基 The maximum inhibition rate of fermentation broth to the tested bacteria and fermentation medium | ||||||
---|---|---|---|---|---|---|---|
金黄色葡萄球菌ATCC 29213 | 耐甲氧西林金黄色葡萄球菌MRSA 181223 | 铜绿假单胞菌 ATCC 27853 | 大肠埃希菌ATCC 25922 | 肺炎克雷伯菌ATCC 700603 | 耐碳青霉烯鲍曼不动杆菌 CRAB 181236 | 白色念珠菌ATCC 10231 | |
Streptomyces sp. XZ19-363 | 87.4%(FM4) | 82.7%(FM4) | 87.1%(FM4) | < 50% | 50.8%(FM4) | 91.3%(FM4) | < 50% |
Streptomyces sp. XZ19-323 | 86.9%(FM3) | 79.6%(FM3) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-034 | 84.6%(Cazpeck) | 73.1%(Cazpeck) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-175 | 86.2%(FM3) | 79.6%(FM3/FM4) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-147 | 86.4%(FM4) | 81.0%(FM4) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-130 | 88.8% (ISP 2) | 83.4%(ISP 2) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-336 | 88.1%(ISP 2) | 83.1%(ISP 2) | < 50% | < 50% | < 50% | < 50% | 78.9%(FM3) |
Streptomyces sp. XZ19-098 | 88.3%(FM3) | 82.7% (ISP 2/FM4) | < 50% | 72.6%(YMS) | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-152 | 84.1%(PDB) | 82.7%(FM4) | < 50% | < 50% | < 50% | < 50% | < 50% |
Streptomyces sp. XZ19-091 | 88.1%(FM3) | 83.1%(FM4) | < 50% | < 50% | < 50% | < 50% | 83.8%(FM3) |
Streptomyces sp. XZ19-122 | 88.3%(FM3) | 83.4%(ISP 2) | < 50% | < 50% | < 50% | 53.0%(F1) | 84.1%(FM3) |
Streptomyces sp. XZ19-015 | 88.3% (ISP 2) | 83.7%(ISP 2) | < 50% | < 50% | < 50% | 64.4%(FM3) | 83.8%(FM4) |
Streptomyces sp. XZ19-030 | 88.3% (ISP 2) | 82.0%(FM4) | < 50% | < 50% | < 50% | < 0.5% | 81.0%(M2) |
Streptomyces sp. XZ19-036 | 87.4% (ISP 2) | 81.7%(ISP 2) | < 50% | < 50% | < 50% | < 0.5% | 85.0% (FM11) |
Streptomyces sp. XZ19-093 | < 50% | < 50% | < 50% | < 50% | < 50% | 55.1%(M331) | < 50% |
Streptomyces sp. XZ19-021 | < 50% | < 50% | < 50% | < 50% | < 50% | 55.7%(F1) | < 50% |
Streptomyces sp. XZ19-006 | 77.3%(M2) | 71.3%(M2) | < 50% | < 50% | < 50% | 51.2%(M331) | < 50% |
Streptomyces sp. XZ19-003 | 82.2%(YMS) | 65.5%(YMS) | < 50% | < 50% | < 50% | < 50% | < 50% |
Promicromonospora sp. XZ19-011 | < 50% | < 50% | < 50% | < 50% | < 50% | 73.9%(M331) | < 50% |
Micromonospora sp. XZ19-205 | 59.4%(YMS) | < 50% | < 50% | < 50% | < 50% | < 50% | < 50% |
美罗培南 | 87.1% | 9.50% | 91. 5% | 91.6% | 93.5% | 42.2% | - |
万古霉素 | 83.3% | 74.1% | -1.2% | 37.8% | 15.1% | 40.0% | - |
氟康唑 | - | - | - | - | - | - | 66.1% |
伊曲康唑 | - | - | - | - | - | - | 44.5% |
两性霉素B | - | - | - | - | - | - | 64.6% |
[1] | Frieri M, Kumar K, Boutin A. Antibiotic resistance[J]. J Infect Public Heal, 2017, 10(4): 369-378. |
[2] |
Xie CL, Xia JM, et al. Metabolomic investigations on Nesterenkonia flava revealed significant differences between marine and terrestrial actinomycetes[J]. Mar Drugs, 2018, 16(10): 356.
doi: 10.3390/md16100356 URL |
[3] | 任建委, 杜宝中. 放线菌资源及主要次级代谢产物活性概述[J]. 西藏科技, 2020(4): 15-18, 28. |
Ren JW, Du BZ. Summary of actinomycetes resources and activities of main secondary metabolites[J]. Tibet Sci Technol, 2020(4): 15-18, 28. | |
[4] | 徐志勇, 冯昭, 徐静. 红树林微生物抗菌活性成分研究进展[J]. 中国抗生素杂志, 2017, 42(4): 241-254. |
Xu ZY, Feng Z, Xu J. Research advances on antimicrobial activities of microbes derived from mangrove[J]. Chin J Antibiot, 2017, 42(4): 241-254. | |
[5] |
Clardy J, et al. New antibiotics from bacterial natural products[J]. Nat Biotechnol, 2006, 24(12): 1541-1550.
pmid: 17160060 |
[6] |
Chen P, Zhang C, Ju X, et al. Community composition and metabolic potential of endophytic actinobacteria from coastal salt marsh plants in Jiangsu, China[J]. Front Microbiol, 2019, 10: 1063.
doi: 10.3389/fmicb.2019.01063 pmid: 31139174 |
[7] | 张万芹, 等. 贵州兴义喀斯特洞穴可培养放线菌多样性及抗菌活性初筛[J]. 微生物学报, 2020, 60(6): 1063-1073. |
Zhang WQ, Fang BZ, Han MX, et al. Diversity and antibacterial activity of culturable actinobacteria in Karst cave soil in Xingyi, Guizhou[J]. Acta Microbiol Sin, 2020, 60(6): 1063-1073. | |
[8] | 祖健, 刘少伟, 庹利, 等. 湖北利川喀斯特洞穴放线菌多样性及抗菌活性研究[J]. 中国抗生素杂志, 2016, 41(3): 186-195. |
Zu J, Liu SW, Tuo L, et al. Studies on diversity and anti-microbial activity of actinobacteria isolated from Karst caves in Lichuan, Hubei[J]. Chin J Antibiot, 2016, 41(3): 186-195. | |
[9] | 张爱梅, 韩雪英, 孙坤, 等. 高通量测序分析中国沙棘根瘤与根际土壤细菌多样性[J]. 草原与草坪, 2018, 38(2): 49-55. |
Zhang AM, Han XY, Sun K, et al. Root nodules endophytic and rhizosphere soil bacteria diversityof Hippophae rhamnoidoes subsp. sinensis based on high-throughput sequencing[J]. Grassland Turf, 2018, 38(2): 49-55. | |
[10] | 黄路枝, 胡兆农, 郭正彦, 等. 土壤稀有放线菌的选择性分离及其抗菌活性研究[J]. 农药学学报, 2007, 9(1): 59-65. |
Huang LZ, Hu ZN, Guo ZY, et al. Study on selective isolation and antibiotic activity of rare actinomycetes from soil[J]. Chin J Pestic Sci, 2007, 9(1): 59-65. | |
[11] | 彭云霞, 姜怡, 段淑蓉, 等. 稀有放线菌的选择性分离方法[J]. 云南大学学报:自然科学版, 2007, 29(1): 86-89. |
Peng YX, Jiang Y, et al. Selective isolation methods of rare actinomycetes[J]. J Yunnan Univ:Nat Sci Ed, 2007, 29(1): 86-89. | |
[12] | 李利坤. 沙棘根瘤菌的分离鉴定及根瘤菌对植株生长发育的影响[D]. 长春:吉林农业大学, 2018. |
Li LK. Isolation and identification of Rhizobium from seabuckthorn and effects of Rhizobium on the growth and development of plants[D]. Changchun:Jilin Agricultural University, 2018. | |
[13] | 张情. 沙棘根瘤形态结构及根瘤细菌的分离鉴定[D]. 杨凌:西北农林科技大学, 2019. |
Zhang Q. Morphology and structure of root nodules of Hippophae rhamnides and isolation and identification of bacteria in the nodules[D]. Yangling:Northwest A & F University, 2019. | |
[14] |
Bauermeister A, Calil FA, das C L Pinto F, et al. Pradimicin-IRD from Amycolatopsis sp. IRD-009 and its antimicrobial and cytotoxic activities[J]. Nat Prod Res, 2019, 33(12): 1713-1720.
doi: 10.1080/14786419.2018.1434639 pmid: 29451013 |
[15] |
Nakashima T, Kimura T, et al. Nanaomycin H:a new nanaomycin analog[J]. J Biosci Bioeng, 2017, 123(6): 765-770.
doi: S1389-1723(16)30650-8 pmid: 28202308 |
[16] |
Hashizume H, Sawa R, Yamashita K, et al. Structure and antibacterial activities of new cyclic peptide antibiotics, pargamicins B, C and D, from Amycolatopsis sp. ML1-hF4[J]. J Antibiot, 2017, 70(5): 699-704.
doi: 10.1038/ja.2017.34 pmid: 28293037 |
[17] |
Serrill JD, Tan M, Fotso S, et al. Apoptolidins A and C activate AMPK in metabolically sensitive cell types and are mechanistically distinct from oligomycin A[J]. Biochem Pharmacol, 2015, 93(3): 251-265.
doi: 10.1016/j.bcp.2014.11.015 URL |
[18] |
Dasari VRRK, Muthyala MKK, Nikku MY, et al. Novel Pyridinium compound from marine actinomycete, Amycolatopsis alba var. nov. DVR D4 showing antimicrobial and cytotoxic activities in vitro[J]. Microbiol Res, 2012, 167(6): 346-351.
doi: 10.1016/j.micres.2011.12.003 URL |
[19] | 周双清, 黄小龙, 等. Chelex-100快速提取放线菌DNA作为PCR扩增模板[J]. 生物技术通报, 2010(2): 123-125. |
Zhou SQ, Huang XL, Huang DY, et al. A rapid method for extracting DNA from actinomycetes by chelex-100[J]. Biotechnol Bull, 2010(2): 123-125. | |
[20] | 张玉琴, 李文均, 等. PCR法快速识别actinobacteria的五种模板制备方法的比较[J]. 生物技术, 2004, 14(5): 37-39. |
Zhang YQ, Li WJ, Chen GZ, et al. Comparison of five PCR template preparation methods for fast identification of actinobacteria[J]. Biotechnology, 2004, 14(5): 37-39. | |
[21] |
Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28(10): 2731-2739.
doi: 10.1093/molbev/msr121 URL |
[22] |
Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4(4): 406-425.
pmid: 3447015 |
[23] | 周子雄, 黄庆华, 朱爽, 等. 酶标仪快速测定抗菌物质抑菌活性方法的建立[J]. 微生物前沿, 2014, 3(2): 29-35. |
Zhou ZX, Huang QH, Zhu S, et al. Establishment of rapid determining method for antibacterial activity by microplate reader[J]. Advances in Microbiology, 2014, 3(2): 29-35.
doi: 10.12677/AMB.2014.32004 URL |
|
[24] |
Omata K, Watanabe Y, Umegaki T, et al. Catalyst development for methanol synjournal using parallel reactors for high-throughput screening based on a 96 well microplate system[J]. J Japan Petrol Inst, 2003, 46(5): 328-334.
doi: 10.1627/jpi.46.328 URL |
[25] |
Li YH, He N, Luo MN, et al. Application of untargeted tandem mass spectrometry with molecular networking for detection of enniatins and beauvericins from complex samples[J]. J Chromatogr A, 2020, 1634: 461626.
doi: 10.1016/j.chroma.2020.461626 URL |
[26] |
Schulz B, Boyle C, Draeger S, et al. Endophytic fungi:a source of novel biologically active secondary metabolites[J]. Mycol Res, 2002, 106(9): 996-1004.
doi: 10.1017/S0953756202006342 URL |
[27] | 张爱梅. 沙棘属植物根际可培养微生物的初步研究[D]. 兰州:西北师范大学, 2008. |
Zhang AM. Study on the cultivable microorganism of Hippophae rhizosphere[D]. Lanzhou:Northwest Normal University, 2008. | |
[28] | 全国细菌耐药监测网. 全国细菌耐药监测网2014—2019年老年患者常见临床分离细菌耐药性监测报告[J]. 中国感染控制杂志, 2021, 20(2): 112-123. |
System CARS. Antimicrobial resistance of clinically isolated bacteria from elderly patients:surveillance report from China antimicrobial resistance surveillance system in 2014-2019[J]. Chin J Infect Control, 2021, 20(2): 112-123. | |
[29] | Lee CR, et al. Biology of Acinetobacter baumannii:pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Front Cell Infect Microbiol, 2017, 7: 55. |
[1] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[2] | YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin [J]. Biotechnology Bulletin, 2023, 39(7): 91-104. |
[3] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[4] | LIU Xiao-li, TONG Zhen-yi, ZHAO Liang, YIN Li, LIU Chen-guang. Research Progress in Non-antibiotic Active Substances Against Helicobacter pylori [J]. Biotechnology Bulletin, 2022, 38(9): 96-105. |
[5] | WANG Zi-yan, WANG Jian, ZHANG Lun, GUI Shui-qing, LU Xue-mei. Study on Antibacterial Stability of Musca domestica Cecropin-MDC Against Salmonella typhimurium [J]. Biotechnology Bulletin, 2022, 38(3): 149-156. |
[6] | XIE Tian-peng, LIU Na, LIU Yue-min, QU Xin, BO Shuang-qin, JING Ming. Effects of Chemical Fertilizer Reduction and Application of Plant Growth Regulators from Traditional Chinese Medicine on the Quality and Its Bacterial Community in Rhizosphere Soil [J]. Biotechnology Bulletin, 2022, 38(3): 79-91. |
[7] | WANG Xiao-he, GU Xi-rong, QI Shun-ju, LI Jie, CUI Yao, LI De-xia, YANG Li-hui. Antioxidant Activity,Antibacterial Activity and Volatile Components of Extracts from the Branches and Leaves of Torreya fargesii Franch. [J]. Biotechnology Bulletin, 2021, 37(8): 152-161. |
[8] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[9] | GONG Xiao-hui, YANG Min, LI Shu-ting, LIN Sheng-hao, XU Wen-tao. Progress on Antibacterial Mechanism,Activity and Application of Silver Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(5): 212-220. |
[10] | YANG Yue, TAO Yan, XIE Jing, QIAN Yun-fang. Biosynthesis of Ctenopharyngodon idella C-type Lysozyme Based on Recombinant Pichia pastoris and Its Antibacterial Activity [J]. Biotechnology Bulletin, 2021, 37(12): 169-179. |
[11] | PAN Jing-yu, CHEN Jia-le, QIAN Yu-cheng, LIU Xin, YANG Hao-ning, LIU Li, WEI Bu-yun, ZHAO Hong-xin. Characteristics of Aureobasidium sp. 3A00493 from Deep Sea Sediment and Characteristic Analysis of Its Extracellular Polysaccharide [J]. Biotechnology Bulletin, 2021, 37(12): 71-81. |
[12] | ZHANG Miao, CHEN Yu-feng, CHEN Long, HUANG Piao-ling, WEI Lu-ling. Difference Analysis of the Community Diversity of Fungi in the Rhizosphere Soil of Zanthoxylum nitidum(Roxb.)DC in Different Regions [J]. Biotechnology Bulletin, 2020, 36(9): 167-179. |
[13] | PAN Wen-juan, LIN Jia-fu, WANG Xiao-tao, GUO Yi-dong, CHU Yi-wen, LIU Chao-lan. Isolation,Identification and Antimicrobial Activity Determination of Actinobacteria from the Lakes in Tibet [J]. Biotechnology Bulletin, 2020, 36(7): 97-103. |
[14] | WANG Zhi-xin, LIU Yang, ZHOU Jing-bo, HONG Dan, LU Lei-zhen, NING Ya-wei, JIA Ying-min. Optimization of Quantitative Determination of Bacitracin Based on Turbidimetric Method [J]. Biotechnology Bulletin, 2020, 36(5): 92-97. |
[15] | ZHAO Zhen, WANG Sha-sha, LÜ Xing-xing, TAO Yan, XIE Jing, QIAN Yun-fang. Heterologous Expression of Cyclina sinensis Mytimacin Antibacterial Peptide Based on Recombinant Pichia pastoris [J]. Biotechnology Bulletin, 2020, 36(5): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||