Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 252-262.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0443
Previous Articles Next Articles
MA Yan-qin1(), QIU Yi-bin2(), LI Sha1(), XU Hong1
Received:
2021-04-06
Online:
2022-02-26
Published:
2022-03-09
Contact:
QIU Yi-bin,LI Sha
E-mail:mayan_qin@163.com;qyb@njfu.edu.cn;lisha@njtech.edu.cn
MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid[J]. Biotechnology Bulletin, 2022, 38(2): 252-262.
Microorganism | Strategy | HA /(g·L-1) | Molecular weight/Da | Reference |
---|---|---|---|---|
S. zooepidemicus CKD 117 | Optimizing fermentation conditions | 5.4 | 2.9×106 | [ |
S. zooepidemicus WSH-24 | Intermittent alkaline-stress strategy | 6.5 | - | [5] |
S. zooepidemicus ATCC 39920 | Using oxygen vector and optimum impeller tip speed | 4.25 | 1.54×107 | [ |
S. zooepidemicus BCRC15414 | A two-stage anoxic(static)-aerobic sequential culture | 0.51 | 3.0×103 | [ |
S. zooepidemicus ATCC 39920 | Redirection of carbon flux by addition of glycolytic inhibitors,glutamine and iodoacetate | 5 | 3.1-3.2×106 | [ |
S. zooepidemicus ATCC 39920 | Overexpression of scrB in S. zooepidemicus ΔfruK | 5.6 | - | [ |
S. zooepidemicus IBRC-M 10919 Δhyl | Removal of the hyaluronidase-encoding gene | 6 | 3.8×106 | [ |
S. zooepidemicus HA-13-06 | Two-stage fermentation process | 4.75 | 2.36×106 | [ |
S. zooepidemicus MTCC 3523 | Dissolved oxygen and N-acetyl glucosamine supply | 2.4 | 2.53×106 | [ |
S. thermophilus YIT 2084 | Fermentation conditions and soybean peptide supplementation | 0.208 | 1.3×105 | [ |
S. thermophilus YIT 2084 | Co-expressing HA synthase hasA and hasB | 1.2 | 1×106 | [4] |
S. equisimilis mutant nc2168 | Optimization of flask culture medium and conditions | 0.225 | - | [ |
S. iniae | Ultraviolet mutation | 0.12 | 3×105 | [ |
S. sp. ID9102 | Optimization of medium components | 6.94 | 5.9×106 | [ |
E. coli Top10 | Co-expressing HA synthase hasA and ugd from S. equisimilis | 0.19 | 3.5×105-1.9×106 | [ |
E. coli BL21 | Expression of hyaluronan synthase hasA from S. zooepidemicus ATCC 39920 | 0.532 | 3.46×104 | [ |
B. subtilis 168 | Inducible expression of pmHAS,tuaD and gtaB | 6.8 | 4.55×106 | [ |
Coexpression committed genes(hasA,tuaD,gtaB,glmU,glmM,and glmS);downregulate pfkA expression of the glycolytic pathway;integration of LHAase with the activity at 1.62×106 U/mL | 19.38 | 6.62×103 | [ | |
Engineering of cell membrane by overexpressing pgsA,clsA and reducing the expression of ftsZ | 1.25 | 2.1×106 | [ | |
B. subtilis WB600 | Regulation of temperature using the recombinant strain carrying hasA gene from S. ubris,hasB,and hasC from B. subtilis WB600 | 3.65 | 0.39-6.94×106 | [ |
C. glutamicum 13032 | Coexpression gene hasA from S. equisimilis,hasB from C. glutamicum ATCC13032 | 8.3 | 1.3×106 | [ |
Coexpression gene hasA from S. equisimilis,hasB from C. glutamicum ATCC13032;deletion of lactate dehydrogenase | 21.6 | 1.28×106 | [ | |
An additional promoter PdapB for driving hasB expression;deletion of fba,zwf deletion and knockout of lactate/acetate pathway | 28.7 | 0.21×106 | [ | |
Overexpression of hyaluronan synthase spHasA,enzymes of intermediate metabolic pathways and attenuation of polysaccharide biosynthesis;Disruption of the encapsulation with the leech hyaluronidase | 34.2-74.1 | 5.3×104-3.31×105 | [ | |
Streptomyces albulus | Overexpression of gene hasA from S. zooepidemicus,gene udgA,glmU,and gtaB genes from Streptomyces avermitilis | 6.2 | 2×106 | [ |
Pichia pastoris | Overexpression of xhasA2 and xhasB genes from Xenopus laevis;hasC,hasD,and hasE genes from P. pastoris | 0.8-1.7 | 1.2-2.5×106 | [ |
Lactococcus lactis CES15 | Expression of hasA gene under the control of the PnisA promoter | 6.09 | - | [ |
Table 1 Yield and molecular weight of hyaluronic acid produced by different hosts
Microorganism | Strategy | HA /(g·L-1) | Molecular weight/Da | Reference |
---|---|---|---|---|
S. zooepidemicus CKD 117 | Optimizing fermentation conditions | 5.4 | 2.9×106 | [ |
S. zooepidemicus WSH-24 | Intermittent alkaline-stress strategy | 6.5 | - | [5] |
S. zooepidemicus ATCC 39920 | Using oxygen vector and optimum impeller tip speed | 4.25 | 1.54×107 | [ |
S. zooepidemicus BCRC15414 | A two-stage anoxic(static)-aerobic sequential culture | 0.51 | 3.0×103 | [ |
S. zooepidemicus ATCC 39920 | Redirection of carbon flux by addition of glycolytic inhibitors,glutamine and iodoacetate | 5 | 3.1-3.2×106 | [ |
S. zooepidemicus ATCC 39920 | Overexpression of scrB in S. zooepidemicus ΔfruK | 5.6 | - | [ |
S. zooepidemicus IBRC-M 10919 Δhyl | Removal of the hyaluronidase-encoding gene | 6 | 3.8×106 | [ |
S. zooepidemicus HA-13-06 | Two-stage fermentation process | 4.75 | 2.36×106 | [ |
S. zooepidemicus MTCC 3523 | Dissolved oxygen and N-acetyl glucosamine supply | 2.4 | 2.53×106 | [ |
S. thermophilus YIT 2084 | Fermentation conditions and soybean peptide supplementation | 0.208 | 1.3×105 | [ |
S. thermophilus YIT 2084 | Co-expressing HA synthase hasA and hasB | 1.2 | 1×106 | [4] |
S. equisimilis mutant nc2168 | Optimization of flask culture medium and conditions | 0.225 | - | [ |
S. iniae | Ultraviolet mutation | 0.12 | 3×105 | [ |
S. sp. ID9102 | Optimization of medium components | 6.94 | 5.9×106 | [ |
E. coli Top10 | Co-expressing HA synthase hasA and ugd from S. equisimilis | 0.19 | 3.5×105-1.9×106 | [ |
E. coli BL21 | Expression of hyaluronan synthase hasA from S. zooepidemicus ATCC 39920 | 0.532 | 3.46×104 | [ |
B. subtilis 168 | Inducible expression of pmHAS,tuaD and gtaB | 6.8 | 4.55×106 | [ |
Coexpression committed genes(hasA,tuaD,gtaB,glmU,glmM,and glmS);downregulate pfkA expression of the glycolytic pathway;integration of LHAase with the activity at 1.62×106 U/mL | 19.38 | 6.62×103 | [ | |
Engineering of cell membrane by overexpressing pgsA,clsA and reducing the expression of ftsZ | 1.25 | 2.1×106 | [ | |
B. subtilis WB600 | Regulation of temperature using the recombinant strain carrying hasA gene from S. ubris,hasB,and hasC from B. subtilis WB600 | 3.65 | 0.39-6.94×106 | [ |
C. glutamicum 13032 | Coexpression gene hasA from S. equisimilis,hasB from C. glutamicum ATCC13032 | 8.3 | 1.3×106 | [ |
Coexpression gene hasA from S. equisimilis,hasB from C. glutamicum ATCC13032;deletion of lactate dehydrogenase | 21.6 | 1.28×106 | [ | |
An additional promoter PdapB for driving hasB expression;deletion of fba,zwf deletion and knockout of lactate/acetate pathway | 28.7 | 0.21×106 | [ | |
Overexpression of hyaluronan synthase spHasA,enzymes of intermediate metabolic pathways and attenuation of polysaccharide biosynthesis;Disruption of the encapsulation with the leech hyaluronidase | 34.2-74.1 | 5.3×104-3.31×105 | [ | |
Streptomyces albulus | Overexpression of gene hasA from S. zooepidemicus,gene udgA,glmU,and gtaB genes from Streptomyces avermitilis | 6.2 | 2×106 | [ |
Pichia pastoris | Overexpression of xhasA2 and xhasB genes from Xenopus laevis;hasC,hasD,and hasE genes from P. pastoris | 0.8-1.7 | 1.2-2.5×106 | [ |
Lactococcus lactis CES15 | Expression of hasA gene under the control of the PnisA promoter | 6.09 | - | [ |
Field | Application | HA molecular weight/Da | Reference |
---|---|---|---|
Medicine | Treatment of inflam- matory skin diseases. | 6×106 | [70-72] |
Anticancer and anti- proliferative | 1.2×105 | [73-74] | |
Treatment of inflam- matory joint diseases | 1×106 | [75-77] | |
Anti-diabetic | - | [ | |
Immunomodulatory | 2×104 | [ | |
Cosmetics | Anti-aging | <1×104 | [ |
Skin-repairing | 1-10×104 | [ | |
Food | Food and health | <1×104 | [ |
Table 2 Summary of hyaluronic acid applications and corresponding molecular weights
Field | Application | HA molecular weight/Da | Reference |
---|---|---|---|
Medicine | Treatment of inflam- matory skin diseases. | 6×106 | [70-72] |
Anticancer and anti- proliferative | 1.2×105 | [73-74] | |
Treatment of inflam- matory joint diseases | 1×106 | [75-77] | |
Anti-diabetic | - | [ | |
Immunomodulatory | 2×104 | [ | |
Cosmetics | Anti-aging | <1×104 | [ |
Skin-repairing | 1-10×104 | [ | |
Food | Food and health | <1×104 | [ |
[1] |
Chen WY, Abatangelo G. Functions of hyaluronan in wound repair[J]. Wound Repair Regen, 1999, 7(2):79-89.
pmid: 10231509 |
[2] |
Armstrong DC, Cooney MJ, Johns MR. Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus[J]. Appl Microbiol Biotechnol, 1997, 47(3):309-312.
doi: 10.1007/s002530050932 URL |
[3] | Liu L, Sun J, Xu W, et al. Modeling and optimization of microbial hyaluronic acid production by Streptococcus zooepidemicus using radial basis function neural network coupling quantum-behaved particle swarm optimization algorithm[J]. Biotechnol Prog, 2009, 25(6):1819-1825. |
[4] |
Izawa N, Serata M, Sone T, et al. Hyaluronic acid production by recombinant Streptococcus thermophilus[J]. J Biosci Bioeng, 2011, 111(6):665-670.
doi: 10.1016/j.jbiosc.2011.02.005 URL |
[5] |
Liu L, Wang M, Du G, et al. Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy[J]. Lett Appl Microbiol, 2008, 46(3):383-388.
doi: 10.1111/j.1472-765X.2008.02325.x pmid: 18221275 |
[6] |
Weigel PH. Functional characteristics and catalytic mechanisms of the bacterial hyaluronan synthases[J]. IUBMB Life, 2002, 54(4):201-211.
pmid: 12512859 |
[7] |
Itano N, Kimata K. Expression cloning and molecular characterization of HAS protein, a eukaryotic hyaluronan synthase[J]. J Biol Chem, 1996, 271(17):9875-9878.
doi: 10.1074/jbc.271.17.9875 pmid: 8626618 |
[8] |
Shyjan AM, Heldin P, Butcher EC, et al. Functional cloning of the cDNA for a human hyaluronan synthase[J]. J Biol Chem, 1996, 271(38):23395-23399.
doi: 10.1074/jbc.271.38.23395 pmid: 8798544 |
[9] |
Spicer AP, Augustine ML, McDonald JA. Molecular cloning and characterization of a putative mouse hyaluronan synthase[J]. J Biol Chem, 1996, 271(38):23400-23406.
doi: 10.1074/jbc.271.38.23400 pmid: 8798545 |
[10] |
Watanabe K, Yamaguchi Y. Molecular identification of a putative human hyaluronan synthase[J]. J Biol Chem, 1996, 271(38):22945-22948.
doi: 10.1074/jbc.271.38.22945 pmid: 8798477 |
[11] |
DeAngelis PL, Jing W, Graves MV, et al. Hyaluronan synthase of Chlorella virus PBCV-1[J]. Science, 1997, 278(5344):1800-1803.
pmid: 9388183 |
[12] |
DeAngelis PL, Jing W, Drake RR, et al. Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida[J]. J Biol Chem, 1998, 273(14):8454-8458.
doi: 10.1074/jbc.273.14.8454 pmid: 9525958 |
[13] |
Tlapak-Simmons VL, Baron CA, Weigel PH. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis[J]. Biochemistry, 2004, 43(28):9234-9242.
pmid: 15248781 |
[14] |
Jongsareejit B, Bhumiratana A, Morikawa M, et al. Cloning of hyaluronan synthase(sz-hos)gene from Streptococcus zooepidemicus in Escherichia coli[J]. ScienceAsia, 2007, 33(4):389-395.
doi: 10.2306/scienceasia1513-1874.2007.33.389 URL |
[15] |
Nho SW, Hikima J, Cha IS, et al. Complete genome sequence and immunoproteomic analyses of the bacterial fish pathogen Streptococcus parauberis[J]. J Bacteriol, 2011, 193(13):3356-3366.
doi: 10.1128/JB.00182-11 URL |
[16] |
Ward PN, Field TR, Ditcham WG, et al. Identification and disruption of two discrete loci encoding hyaluronic acid capsule biosynjournal genes hasA, hasB, and hasC in Streptococcus uberis[J]. Infect Immun, 2001, 69(1):392-399.
pmid: 11119529 |
[17] |
Semino CE, Specht CA, Raimondi A, et al. Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synjournal of Nod-like chitin oligosaccharides during early embryogenesis[J]. PNAS, 1996, 93(10):4548-4553.
pmid: 8643441 |
[18] |
Itano N, Sawai T, Yoshida M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties[J]. J Biol Chem, 1999, 274(35):25085-25092.
doi: 10.1074/jbc.274.35.25085 pmid: 10455188 |
[19] |
Jeong E, Shim WY, Kim JH. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight[J]. J Biotechnol, 2014, 185:28-36.
doi: 10.1016/j.jbiotec.2014.05.018 URL |
[20] |
Gomes AMV, Netto JHCM, Carvalho LS, et al. Heterologous hyaluronic acid production in Kluyveromyces lactis[J]. Microorganisms, 2019, 7(9):294.
doi: 10.3390/microorganisms7090294 URL |
[21] |
Wang Y, Hu LT, Huang H, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum[J]. Nat Commun, 2020, 11:3120.
doi: 10.1038/s41467-020-16962-7 URL |
[22] | 朱丽雅, 吴善善, 欧阳水平, 等. 外源添加氨基酸对兽疫链球菌产透明质酸的影响[J]. 林业工程学报, 2019, 4(3):74-79. |
Zhu LY, Wu SS, Ouyang SP, et al. Effect of addition of amino acids on production of hyaluronic acid by Streptococcus zooepidemicus[J]. J For Eng, 2019, 4(3):74-79. | |
[23] |
Lai ZW, Rahim RA, Ariff AB, et al. Biosynjournal of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed[J]. J Biosci Bioeng, 2012, 114(3):286-291.
doi: 10.1016/j.jbiosc.2012.04.011 URL |
[24] |
Jia YN, Zhu J, Chen XF, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynjournal of uniform hyaluronic acid with controlled molecular weights[J]. Bioresour Technol, 2013, 132:427-431.
doi: 10.1016/j.biortech.2012.12.150 URL |
[25] |
Widner B, Behr R, Von Dollen S, et al. Hyaluronic acid production in Bacillus subtilis[J]. Appl Environ Microbiol, 2005, 71(7):3747-3752.
doi: 10.1128/AEM.71.7.3747-3752.2005 URL |
[26] |
Jin P, Kang Z, Yuan P, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168[J]. Metab Eng, 2016, 35:21-30.
doi: 10.1016/j.ymben.2016.01.008 URL |
[27] |
Vellanoweth RL, Rabinowitz JC. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo[J]. Mol Microbiol, 1992, 6(9):1105-1114.
pmid: 1375309 |
[28] |
Hmar RV, Prasad SB, Jayaraman G, et al. Chromosomal integration of hyaluronic acid synjournal(has)genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis[J]. Biotechnol J, 2014, 9(12):1554-1564.
doi: 10.1002/biot.201400215 URL |
[29] |
Sheng JZ, Ling PX, Wang FS. Constructing a recombinant hyaluronic acid biosynjournal operon and producing food-grade hyaluronic acid in Lactococcus lactis[J]. J Ind Microbiol Biotechnol, 2015, 42(2):197-206.
doi: 10.1007/s10295-014-1555-8 URL |
[30] |
Cheng F, Gong Q, Yu H, et al. High-titer biosynjournal of hyaluronic acid by recombinant Corynebacterium glutamicum[J]. Biotechnol J, 2016, 11(4):574-584.
doi: 10.1002/biot.201500404 URL |
[31] |
Hoffmann J, Altenbuchner J. Hyaluronic acid production with Corynebacterium glutamicum:effect of media composition on yield and molecular weight[J]. J Appl Microbiol, 2014, 117(3):663-678.
doi: 10.1111/jam.12553 pmid: 24863652 |
[32] |
Cheng FY, Luozhong SJ, Guo ZG, et al. Enhanced biosynjournal of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation[J]. Biotechnol J, 2017, 12(10):1700191.
doi: 10.1002/biot.v12.10 URL |
[33] | Kim SJ, Park SY, Kin CW. A novel approach to the production of hyaluronic acid by Streptococcus zooepidemicus[J]. J Microbiol Biotechnol, 2006, 16(12):1849-1855. |
[34] |
Shah MV, Badle SS, Ramachandran KB. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynjournal pathway[J]. Biochem Eng J, 2013, 80:53-60.
doi: 10.1016/j.bej.2013.09.013 URL |
[35] |
Zhang X, Wang M, Li T, et al. Construction of efficient Streptococcus zooepidemicus strains for hyaluoronic acid production based on identification of key genes involved in sucrose metabolism[J]. AMB Express, 2016, 6(1):121.
doi: 10.1186/s13568-016-0296-7 URL |
[36] |
Pourzardosht N, Rasaee MJ. Improved yield of high molecular weight hyaluronic acid production in a stable strain of Streptococcus zooepidemicus via the elimination of the hyaluronidase-encoding gene[J]. Mol Biotechnol, 2017, 59(6):192-199.
doi: 10.1007/s12033-017-0005-z pmid: 28500482 |
[37] |
Liu J, Wang Y, Li Z, et al. Efficient production of high-molecular-weight hyaluronic acid with a two-stage fermentation[J]. RSC Adv, 2018, 8(63):36167-36171.
doi: 10.1039/C8RA07349J URL |
[38] |
Mohan N, Tadi SRR, Pavan SS, et al. Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synjournal in Streptococcus zooepidemicus cell factory[J]. Appl Microbiol Biotechnol, 2020, 104(8):3349-3365.
doi: 10.1007/s00253-020-10445-x URL |
[39] |
Izawa N, Hanamizu T, Sone T, et al. Effects of fermentation conditions and soybean peptide supplementation on hyaluronic acid production by Streptococcus thermophilus strain YIT 2084 in milk[J]. J Biosci Bioeng, 2010, 109(4):356-360.
doi: 10.1016/j.jbiosc.2009.10.011 URL |
[40] |
Chen YH, Li J, Liu L, et al. Optimization of flask culture medium and conditions for hyaluronic acid production by a Streptococcus equisimilis mutant nc2168[J]. Braz J Microbiol, 2012, 43(4):1553-1561.
doi: 10.1590/S1517-83822012000400040 URL |
[41] | 管峰, 金嘉长, 赵华国, 等. 海豚链球菌诱变发酵法制备透明质酸及其在动物皮肤修复中的应用[J]. 生物工程学报, 2016, 32(8):1104-1114. |
Guan F, Jin JC, Zhao HG, et al. Hyaluronic acid production by Streptococcus iniae and its application in rabbit skin’s regeneration[J]. Chin J Biotechnol, 2016, 32(8):1104-1114. | |
[42] |
Im JH, Song JM, Kang JH, et al. Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach[J]. J Ind Microbiol Biotechnol, 2009, 36(11):1337-1344.
doi: 10.1007/s10295-009-0618-8 URL |
[43] |
Yu H, Stephanopoulos G. Metabolic engineering of Escherichia coli for biosynjournal of hyaluronic acid[J]. Metab Eng, 2008, 10(1):24-32.
doi: 10.1016/j.ymben.2007.09.001 URL |
[44] | Lai Z ZW, Teo C CH. Cloning and expression of hyaluronan synthase(hasA)in recombinant Escherichia coli BL21 and its hyaluronic acid production in shake flask culture[J]. Malays J Microbiol, 2019, 15(7):575-582. |
[45] | Chien LJ, Lee CK. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin[J]. Biotechnol Prog, 2007, 23(5):1017-1022. |
[46] |
Li Y, Li G, Zhao X, et al. Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis[J]. 3 Biotech, 2019, 9(6):225.
doi: 10.1007/s13205-019-1749-x URL |
[47] |
Cheng F, Yu H, Stephanopoulos G. Engineering Corynebacterium glutamicum for high-titer biosynjournal of hyaluronic acid[J]. Metab Eng, 2019, 55:276-289.
doi: 10.1016/j.ymben.2019.07.003 URL |
[48] |
Yoshimura T, Shibata N, Hamano Y, et al. Heterologous production of hyaluronic acid in an ε-poly-L-lysine producer, Streptomyces albulus[J]. Appl Environ Microbiol, 2015, 81(11):3631-3640.
doi: 10.1128/AEM.00269-15 URL |
[49] |
Sunguroğlu C, Sezgin DE, Aytar Çelik P, et al. Higher titer hyaluronic acid production in recombinant Lactococcus lactis[J]. Prep Biochem Biotechnol, 2018, 48(8):734-742.
doi: 10.1080/10826068.2018.1508036 URL |
[50] |
Marcellin E, Steen JA, Nielsen LK. Insight into hyaluronic acid molecular weight control[J]. Appl Microbiol Biotechnol, 2014, 98(16):6947-6956.
doi: 10.1007/s00253-014-5853-x pmid: 24957250 |
[51] |
Sonenshein AL. Control of key metabolic intersections in Bacillus subtilis[J]. Nat Rev Microbiol, 2007, 5(12):917-927.
pmid: 17982469 |
[52] |
Yan X, Yu HJ, Hong Q, et al. Cre/lox system and PCR-based genome engineering in Bacillus subtilis[J]. Appl Environ Microbiol, 2008, 74(17):5556-5562.
doi: 10.1128/AEM.01156-08 URL |
[53] |
Kaur M, Jayaraman G. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis[J]. Metab Eng Commun, 2016, 3:15-23.
doi: 10.1016/j.meteno.2016.01.003 URL |
[54] |
Teramoto H, Inui M, Yukawa H. Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum[J]. J Biotechnol, 2011, 154(2/3):114-125.
doi: 10.1016/j.jbiotec.2011.01.016 URL |
[55] |
Liu L, Du G, Chen J, et al. Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcuszooepidemicus[J]. Food Chem, 2008, 110(4):923-926.
doi: 10.1016/j.foodchem.2008.02.082 URL |
[56] |
Mehmeti I, Jönsson M, Fergestad EM, et al. Transcriptome, proteome, and metabolite analyses of a lactate dehydrogenase-negative mutant of Enterococcus faecalis V583[J]. Appl Environ Microbiol, 2011, 77(7):2406-2413.
doi: 10.1128/AEM.02485-10 URL |
[57] |
Prasad SB, Ramachandran KB, Jayaraman G. Transcription analysis of hyaluronan biosynjournal genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2012, 94(6):1593-1607.
doi: 10.1007/s00253-012-3944-0 URL |
[58] |
Zhang L, Huang H, Wang H, et al. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis[J]. Biotechnol Lett, 2016, 38(12):2103-2108.
doi: 10.1007/s10529-016-2193-1 URL |
[59] |
Westbrook AW, Ren X, Moo-Young M, et al. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis[J]. Biotechnol Bioeng, 2018, 115(1):216-231.
doi: 10.1002/bit.26459 pmid: 28941282 |
[60] |
Westbrook AW, Moo-Young M, Chou CP. Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis[J]. Appl Environ Microbiol, 2016, 82(16):4876-4895.
doi: 10.1128/AEM.01159-16 URL |
[61] | Zheng Y, Cheng F, Zheng B, et al. Enhancing single-cell hyaluronic acid biosynjournal by microbial morphology engineering[J]. Synth Syst Biotechnol, 2020, 5(4):316-323. |
[62] |
Jiang XR, Chen GQ. Morphology engineering of bacteria for bio-production[J]. Biotechnol Adv, 2016, 34(4):435-440.
doi: 10.1016/j.biotechadv.2015.12.007 URL |
[63] |
Chubukov V, Gerosa L, Kochanowski K, et al. Coordination of microbial metabolism[J]. Nat Rev Microbiol, 2014, 12(5):327-340.
doi: 10.1038/nrmicro3238 pmid: 24658329 |
[64] |
Holtz WJ, Keasling JD. Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140(1):19-23.
doi: 10.1016/j.cell.2009.12.029 URL |
[65] |
Wu MJ, Andreasson JOL, Kladwang W, et al. Automated design of diverse stand-alone riboswitches[J]. ACS Synth Biol, 2019, 8(8):1838-1846.
doi: 10.1021/acssynbio.9b00142 URL |
[66] | Pavicic T, Gauglitz GG, Lersch P, et al. Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment[J]. J Drugs Dermatol, 2011, 10(9):990-1000. |
[67] |
Termeer CC, Hennies J, Voith U, et al. Oligosaccharides of hyaluronan are potent activators of dendritic cells[J]. J Immunol, 2000, 165(4):1863-1870.
pmid: 10925265 |
[68] |
Alaniz L, Rizzo M, Malvicini M, et al. Low molecular weight hyaluronan inhibits colorectal carcinoma growth by decreasing tumor cell proliferation and stimulating immune response[J]. Cancer Lett, 2009, 278(1):9-16.
doi: 10.1016/j.canlet.2008.12.029 pmid: 19185418 |
[69] |
Stern R, Asari AA, Sugahara KN. Hyaluronan fragments:an information-rich system[J]. Eur J Cell Biol, 2006, 85(8):699-715.
doi: 10.1016/j.ejcb.2006.05.009 URL |
[70] | Jegasothy SM, Zabolotniaia V, Bielfeldt S. Efficacy of a new topical nano-hyaluronic acid in humans[J]. J Clin Aesthet Dermatol, 2014, 7(3):27-29. |
[71] |
Symonette CJ, Kaur Mann A, Tan XC, et al. Hyaluronan-phosphatidylethanolamine polymers form pericellular Coats on keratinocytes and promote basal keratinocyte proliferation[J]. Biomed Res Int, 2014, 2014:727459.
doi: 10.1155/2014/727459 pmid: 25276814 |
[72] |
Khorshidi HR, Kasraianfard A, Derakhshanfar A, et al. Evaluation of the effectiveness of sodium hyaluronate, sesame oil, honey, and silver nanoparticles in preventing postoperative surgical adhesion formation. An experimental study[J]. Acta Cirurgica Brasileira, 2017, 32(8):626-632.
doi: S0102-86502017000800626 pmid: 28902938 |
[73] | Safdar MH, Hussain Z, Abourehab MAS, et al. New developments and clinical transition of hyaluronic acid-based nanotherapeutics for treatment of cancer:reversing multidrug resistance, tumour-specific targetability and improved anticancer efficacy[J]. Artif Cells Nanomed Biotechnol, 2018, 46(8):1967-1980. |
[74] |
Xu Y, Asghar S, Yang L, et al. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma[J]. Carbohydr Polym, 2017, 157:419-428.
doi: 10.1016/j.carbpol.2016.09.085 URL |
[75] | Dasa V, DeKoven M, Sun K, et al. Clinical and cost outcomes from different hyaluronic acid treatments in patients with knee osteoarthritis:evidence from a US health plan claims database[J]. Drugs Context, 2016, 5:212296. |
[76] |
Nakamura Y, Uchiyama S, Kamimura M, et al. Bone alterations are associated with ankle osteoarthritis joint pain[J]. Sci Rep, 2016, 6:18717.
doi: 10.1038/srep18717 pmid: 26776564 |
[77] |
Tammachote N, Kanitnate S, Yakumpor T, et al. Intra-articular, single-shot hylan G-F 20 hyaluronic acid injection compared with corticosteroid in knee osteoarthritis[J]. The Journal Bone And Joint Surgery, 2016, 98(11):885-892.
doi: 10.2106/JBJS.15.00544 URL |
[78] | 张睿聪, 孙如梦, 朴明贯. HA-GMS-INS胰岛素口服纳米给药系统研究[J]. 中国医院药学杂志, 2021, 41(2):149-153. |
Zhang RC, Sun RM, Piao MG. Oral nano drug delivery system of HA-GMS-INS insulin[J]. Chin J Hosp Pharm, 2021, 41(2):149-153. | |
[79] | Litwiniuk M, Krejner A, Speyrer MS, et al. Hyaluronic acid in inflammation and tissue regeneration[J]. Wounds, 2016, 28(3):78-88. |
[80] |
Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid:a key molecule in skin aging[J]. Dermatoendocrinol, 2012, 4(3):253-258.
doi: 10.4161/derm.21923 pmid: 23467280 |
[81] |
Kawada C, Yoshida T, Yoshida H, et al. Ingested hyaluronan moisturizes dry skin[J]. Nutr J, 2014, 13:70.
doi: 10.1186/1475-2891-13-70 URL |
[82] |
Weigel PH, Baggenstoss BA. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines[J]. Glycobiology, 2012, 22(10):1302-1310.
doi: 10.1093/glycob/cws102 pmid: 22745284 |
[83] |
Yang J, Cheng FY, Yu HM, et al. Key role of the carboxyl Terminus of hyaluronan synthase in processive synjournal and size control of hyaluronic acid polymers[J]. Biomacromolecules, 2017, 18(4):1064-1073.
doi: 10.1021/acs.biomac.6b01239 pmid: 28192668 |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[3] | LIU Jia-hui, LIU Ye, HUA Er-bing, WANG Meng. PAM Extension of Cytosine Base Editing Tool in Corynebacterium glutamicum [J]. Biotechnology Bulletin, 2023, 39(9): 49-57. |
[4] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[5] | ZHAO Si-jia, WANG Xiao-lu, SUN Ji-lu, TIAN Jian, ZHANG Jie. Modification of Pichia pastoris for Erythritol Production by Metabolic Engineering [J]. Biotechnology Bulletin, 2023, 39(8): 137-147. |
[6] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[7] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[8] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[9] | YANG Dong, TANG Ying. Enzymatic Characterization and Degradation Sites of AFB1 Degradation by the Extracellular Enzyme of Bacillus subtilis Strain WTX1 [J]. Biotechnology Bulletin, 2023, 39(4): 93-102. |
[10] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
[11] | FU Qiao, LIN Qi-lan, XUE Qiang, XIONG Hai-rong, WANG Ya-wei. Effects of CBM41 N-terminal Truncation on the Enzymological Properties of the Pullulanase from Bacillus subtilis 168 [J]. Biotechnology Bulletin, 2022, 38(6): 245-251. |
[12] | NIE Li-bin, YI Ling-xin, DENG Yan, SHENG Qi, WU Xiao-yu, ZHANG Bin. Pathway Engineering Modification of Corynebacterium glutamicum for Shikimic Acid Production [J]. Biotechnology Bulletin, 2022, 38(6): 93-102. |
[13] | QIU Yi-bin, MA Yan-qin, SHA Yuan-yuan, ZHU Yi-fan, SU Er-zheng, LEI Peng, LI Sha, XU Hong. Research Progress in Molecular Genetic Manipulation Technology of Bacillus amyloliquefaciens and Its Application [J]. Biotechnology Bulletin, 2022, 38(2): 205-217. |
[14] | ZHANG Qian, XU Chun-yan, ZHANG Duo, WANG Ya-hui, LIANG Xin-ying, LI Hui. Isolation of Maize Straw-decomposing Bacteria in Yellow-cinnamon Soil and Its Ability of Promoting Decomposition [J]. Biotechnology Bulletin, 2022, 38(12): 233-243. |
[15] | CEN Xiao-long, LEI Xi, MA Shi-yun, CHEN Qian-ru, HUANG Zun-xi, ZHOU Jun-pei, ZHANG Rui. Heterologous Expression and Characterization of the Hyaluronic Acid Lyase HylS from Staphylococcus aureus [J]. Biotechnology Bulletin, 2022, 38(1): 157-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||