Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 67-74.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0757
Previous Articles Next Articles
ZHAO Lin-yan1(), GUAN Hui-lin1, XIANG Ping2, LI Ze-cheng3, BAI Yu-long3, SONG Hong-chuan1, SUN Shi-zhong1, XU Wu-mei1()
Received:
2021-06-13
Online:
2022-02-26
Published:
2022-03-09
Contact:
XU Wu-mei
E-mail:zhaolinyan1166@163.com;xuwumei@ynnu.edu.cn
ZHAO Lin-yan, GUAN Hui-lin, XIANG Ping, LI Ze-cheng, BAI Yu-long, SONG Hong-chuan, SUN Shi-zhong, XU Wu-mei. Composition Features of Microbial Community in the Rhizospheric Soil of Bletilla striata with Root Rot[J]. Biotechnology Bulletin, 2022, 38(2): 67-74.
真菌Fungi | 细菌Bacteria | |||||
---|---|---|---|---|---|---|
Phylum | D | H | Phylum | D | H | |
Ascomycota | 73.43%±6.59%a | 40.92%±10.96%b | Proteobacteria | 24.71%±1.62%a | 28.36%±1.76%a | |
Mortierellomycota | 11.78%±4.19%b | 42.50%±9.86%a | Bacteroidetes | 28.24%±2.35%a | 22.57%±2.90%a | |
Basidiomycota | 6.90%±0.90a | 12.08±7.47%a | Acidobacteria | 12.78%±1.458%a | 15.85%±2.525%a | |
Chytridiomycota | 0.39%±0.20%a | 0.12%±0.078%a | Firmicutes | 13.68%±1.62%a | 9.05%±1.82%a | |
Rozellomycota | 0.10%±0.042%a | 0.028%±0.023%a | Actinobacteria | 7.71%±0.86%a | 8.29%±0.98%a | |
Olpidiomycota | 0.083%±0.054%a | 0.012%±0.009%a | Gemmatimonadetes | 5.25%±0.49%a | 6.42%±0.61%a | |
Others | 7.32%±1.95%a | 4.34%±0.69%a | Others | 7.64%±0.29%a | 9.47%±0.79%a |
Table 1 Relative abundance of microorganisms at the phylum level in the rhizospheric soils of root-rot and healthy B. striata
真菌Fungi | 细菌Bacteria | |||||
---|---|---|---|---|---|---|
Phylum | D | H | Phylum | D | H | |
Ascomycota | 73.43%±6.59%a | 40.92%±10.96%b | Proteobacteria | 24.71%±1.62%a | 28.36%±1.76%a | |
Mortierellomycota | 11.78%±4.19%b | 42.50%±9.86%a | Bacteroidetes | 28.24%±2.35%a | 22.57%±2.90%a | |
Basidiomycota | 6.90%±0.90a | 12.08±7.47%a | Acidobacteria | 12.78%±1.458%a | 15.85%±2.525%a | |
Chytridiomycota | 0.39%±0.20%a | 0.12%±0.078%a | Firmicutes | 13.68%±1.62%a | 9.05%±1.82%a | |
Rozellomycota | 0.10%±0.042%a | 0.028%±0.023%a | Actinobacteria | 7.71%±0.86%a | 8.29%±0.98%a | |
Olpidiomycota | 0.083%±0.054%a | 0.012%±0.009%a | Gemmatimonadetes | 5.25%±0.49%a | 6.42%±0.61%a | |
Others | 7.32%±1.95%a | 4.34%±0.69%a | Others | 7.64%±0.29%a | 9.47%±0.79%a |
Fig. 1 Relative abundance of rhizospheric microorganisms at the genus level in the rhizospheric soils of root-rot and healthy B. striata Only the microbial taxa with significant difference are displayed(P<0.05);Figs. a-f belong to the fungi and g-i belong to bacteria. D indicates the root-rot disease group,and H indicates the healthy group
Fig. 2 Numbers of shared and unique OTUs in the rhizospheric soils of root-rot and healthy B. striata a indicates fungal community,and b indicates bacterial community
分组 Group | 真菌Fungi | 细菌Bacteria | ||||||
---|---|---|---|---|---|---|---|---|
OTU richness | Chao1 | Shannon | OTU richness | Chao1 | Shannon | |||
D | 639.8±40.30a | 675.09±45.02a | 3.82±0.58a | 1 607.20±11.03a | 1 647.26±11.19a | 6.45±0.02a | ||
H | 526.0±6.31b | 639.43±38.54a | 2.92±0.33a | 1 619.00±13.17a | 1 668.55±8.14a | 6.37±0.04a |
Table 2 Alpha diversity of microbial community in the rhizospheric soils of root-rot and healthy B. striata
分组 Group | 真菌Fungi | 细菌Bacteria | ||||||
---|---|---|---|---|---|---|---|---|
OTU richness | Chao1 | Shannon | OTU richness | Chao1 | Shannon | |||
D | 639.8±40.30a | 675.09±45.02a | 3.82±0.58a | 1 607.20±11.03a | 1 647.26±11.19a | 6.45±0.02a | ||
H | 526.0±6.31b | 639.43±38.54a | 2.92±0.33a | 1 619.00±13.17a | 1 668.55±8.14a | 6.37±0.04a |
Fig. 3 Differences in the rhizospheric soil microbial community of root-rot and healthy B. striata based on clustering and redundancy analyses313 a and b show the results of clustering and redundancy analyses of fungal community,c and d show the results of clustering and redundancy analyses of bacterial community
土壤因子Soil factor | H | D | P |
---|---|---|---|
pH | 6.57±0.19 | 6.87±0.18 | <0.05 |
EC(μS·cm-1) | 82.06±5.25 | 65.80±4.14 | <0.05 |
铵态氮(mg·kg-1) | 4.35±0.42 | 5.12±0.36 | <0.05 |
硝态氮(mg·kg-1) | 3.02±0.35 | 6.49±0.60 | <0.01 |
有机质(g·kg-1) | 4.84±0.44 | 5.68±0.52 | <0.05 |
有效磷(mg·kg-1) | 81.36±17.01 | 77.05±28.64 | 0.78 |
有效钾(mg·kg-1) | 414.12±14.71 | 358.00±15.81 | <0.05 |
脲酶(mg·NH4+-N·g-1 24 h-1) | 0.51±0.03 | 0.46±0.03 | <0.05 |
磷酸酶(mg phenol·g-1·12 h-1) | 0.14±0.01 | 0.13±0.01 | 0.13 |
蛋白酶(mg·NH2-N·g-1·24 h-1) | 0.044±0.01 | 0.036±0.01 | <0.01 |
蔗糖酶(mg glucose·g-1·24 h-1) | 22.49±0.89 | 15.90±0.80 | <0.01 |
Table 3 Physicochemical properties and enzyme activities in the rhizospheric soils of root-rot and healthy B. striata
土壤因子Soil factor | H | D | P |
---|---|---|---|
pH | 6.57±0.19 | 6.87±0.18 | <0.05 |
EC(μS·cm-1) | 82.06±5.25 | 65.80±4.14 | <0.05 |
铵态氮(mg·kg-1) | 4.35±0.42 | 5.12±0.36 | <0.05 |
硝态氮(mg·kg-1) | 3.02±0.35 | 6.49±0.60 | <0.01 |
有机质(g·kg-1) | 4.84±0.44 | 5.68±0.52 | <0.05 |
有效磷(mg·kg-1) | 81.36±17.01 | 77.05±28.64 | 0.78 |
有效钾(mg·kg-1) | 414.12±14.71 | 358.00±15.81 | <0.05 |
脲酶(mg·NH4+-N·g-1 24 h-1) | 0.51±0.03 | 0.46±0.03 | <0.05 |
磷酸酶(mg phenol·g-1·12 h-1) | 0.14±0.01 | 0.13±0.01 | 0.13 |
蛋白酶(mg·NH2-N·g-1·24 h-1) | 0.044±0.01 | 0.036±0.01 | <0.01 |
蔗糖酶(mg glucose·g-1·24 h-1) | 22.49±0.89 | 15.90±0.80 | <0.01 |
[1] | 孙乐乐, 杨永红, 刘军凯, 等. 白及的本草考证[J]. 中药材, 2010, 33(12):1965-1968. |
Sun LL, Yang YH, Liu JK, et al. Research on Bletilla striata[J]. J Chin Med Mater, 2010, 33(12):1965-1968. | |
[2] | 张曼, 韩亭亭, 胡春芳, 等. 白及产业现状及可持续发展策略[J]. 中草药, 2019, 50(20):5103-5108. |
Zhang M, Han TT, Hu CF, et al. Industrialization condition and sustainable development strategies of Bletillae Rhizoma[J]. Chin Tradit Herb Drugs, 2019, 50(20):5103-5108. | |
[3] | 柯尚艳, 杨林毅, 等. 白及植株上一种真菌病害的分离与鉴定[J]. 云南农业大学学报:自然科学, 2018, 33(3):405-409. |
Ke SY, Yang LY, et al. Isolation and identification of a fungal disease from Bletilla striata[J]. J Yunnan Agric Univ:Nat Sci, 2018, 33(3):405-409. | |
[4] | 龙小琴, 戴应和. 白及栽培技术要点及主要病虫害防治研究进展[J]. 农业与技术, 2020, 40(14):81-84. |
Long XQ, Dai YH. Main points of cultivation techniques and control of diseases of Bletilla striata[J]. Agric Technol, 2020, 40(14):81-84. | |
[5] | 廖长宏, 陈军文, 吕婉婉, 等. 根和根茎类药用植物根腐病研究进展[J]. 中药材, 2017, 40(2):492-497. |
Liao CH, Chen JW, Lv WW, et al. Research on root rot disease of rhizome medicinal plant[J]. J Chin Med Mater, 2017, 40(2):492-497. | |
[6] | 缪作清, 李世东, 刘杏忠, 等. 三七根腐病病原研究[J]. 中国农业科学, 2006, 39(7):1371-1378. |
Miao ZQ, Li SD, Liu XZ, et al. The causal microorganisms of Panax notoginseng root rot disease[J]. Sci Agric Sin, 2006, 39(7):1371-1378. | |
[7] | 毕武, 陈娟, 焦晓林, 等. 北京地区西洋参根腐病病原鉴定及其致病性[J]. 植物保护, 2011, 37(5):135-138. |
Bi W, Chen J, Jiao XL, et al. Identification of the pathogens causing the root rot and their pathogenicity on American ginseng in Beijing[J]. Plant Prot, 2011, 37(5):135-138. | |
[8] | 曾令祥, 杨琳, 陈娅娅, 等. 贵州中药材白及病虫害种类的调查与综合防治[J]. 贵州农业科学, 2012, 40(7):106-108. |
Zeng LX, Yang L, Chen YY, et al. Investigation and integrated management on diseases and pests for Bletilla striata in Guizhou[J]. Guizhou Agric Sci, 2012, 40(7):106-108. | |
[9] | 曾茜, 陈旭, 刘璞玉, 等. 贵州小白及内生真菌对块茎腐烂病拮抗作用研究[J]. 南方农业, 2018, 12(1):5-7. |
Zeng QX, Chen X, Liu PY, et al. Antagonistic effects of endophytic fungi of Guizhou Bletilla striata on tuber rot[J]. South China Agric, 2018, 12(1):5-7. | |
[10] |
Xiong W, Song Y, Yang K, et al. Rhizosphere protists are key determinants of plant health[J]. Microbiome, 2020, 8(1):27.
doi: 10.1186/s40168-020-00799-9 pmid: 32127034 |
[11] |
Philippot L, Raaijmakers JM, Lemanceau P, et al. Going back to the roots:the microbial ecology of the rhizosphere[J]. Nat Rev Microbiol, 2013, 11(11):789-799.
doi: 10.1038/nrmicro3109 pmid: 24056930 |
[12] |
She S, Niu J, Zhang C, et al. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system[J]. Arch Microbiol, 2017, 199(2):267-275.
doi: 10.1007/s00203-016-1301-x URL |
[13] |
Garbeva P, van Veen JA, van Elsas JD. Microbial diversity in soil:selection microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annu Rev Phytopathol, 2004, 42:243-270.
pmid: 15283667 |
[14] | 闫欢, 高芬, 王梦亮, 等. 黄芪根腐病病株和健株根围微生物菌群变化分析[J]. 植物保护, 2020, 46(4):48-54. |
Yan H, Gao F, Wang ML, et al. Changes of microbial community in root zone soil of Astragalus membranaceus suffering from root rot disease[J]. Plant Prot, 2020, 46(4):48-54. | |
[15] | 谢玉清, 茆军, 王玮, 等. 大蒜根腐病根际土壤真菌群落结构及多样性分析[J]. 中国农学通报, 2020, 36(13):145-153. |
Xie YQ, Mao J, Wang W, et al. Structures and biodiversity of fungal communities in rhizosphere soil of root rot diseased garlic[J]. Chin Agric Sci Bull, 2020, 36(13):145-153. | |
[16] |
Wu ZX, Hao ZP, Sun YQ, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng[J]. Appl Soil Ecol, 2016, 107:99-107.
doi: 10.1016/j.apsoil.2016.05.017 URL |
[17] |
Jiang JL, Yu M, Hou RP, et al. Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases[J]. Plant Soil, 2019, 438(1/2):143-156.
doi: 10.1007/s11104-018-03928-4 URL |
[18] | 蒋景龙, 余妙, 等. 西洋参根腐病发生与根际土壤细菌群落结构变化关系研究[J]. 中草药, 2018, 49(18):4399-4407. |
Jiang JL, Yu M, et al. Relationship between occurrence of root-rot and changes of bacterial community structure in rhizosphere soil of Panax quinquefolius[J]. Chin Tradit Herb Drugs, 2018, 49(18):4399-4407. | |
[19] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999:146-195. |
Lu RK. Methods in analyzing agricultural soil chemistry[M]. Beijing: China Agricultural Science and Technology Press, 1999:146-195. | |
[20] | 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社, 2006. |
Yao HY, Huang CY. Soil microbial ecology and experimental technology[M]. Beijing: Science Press, 2006. | |
[21] | 赵兰坡, 姜岩. 土壤磷酸酶活性测定方法的探讨[J]. 土壤通报, 1986, 17(3):138-141. |
Zhao LP, Jiang Y. The determination method of soil phosphatase activity[J]. Chin J Soil Sci, 1986, 17(3):138-141. | |
[22] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986:302-305. |
Guan SY. Soil enzymes and research methods[M]. Beijing: Agriculture Press, 1986:302-305. | |
[23] |
Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
doi: 10.1093/bioinformatics/btr507 URL |
[24] |
Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.
doi: 10.1093/bioinformatics/btu170 URL |
[25] |
Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200.
doi: 10.1093/bioinformatics/btr381 URL |
[26] |
Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998.
doi: 10.1038/nmeth.2604 URL |
[27] |
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23):7537-7541.
doi: 10.1128/AEM.01541-09 URL |
[28] | Oksanen J, Blanchet FG, Friendly M, et al. vegan:Community Ecology Package[J]. R package version 2, 2018. https://CRAN.R-project.org/package=vegan |
[29] | R Core Team. R:A language and environment for statistical computing[J]. R foundation for statistical computing, Vienna, Austria2017. URL https://www.R-project.org/ . |
[30] |
Fierer N. Embracing the unknown:disentangling the complexities of the soil microbiome[J]. Nat Rev Microbiol, 2017, 15(10):579-590.
doi: 10.1038/nrmicro.2017.87 pmid: 28824177 |
[31] |
Jacoby R, Peukert M, Succurro A, et al. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions[J]. Front Plant Sci, 2017, 8:1617.
doi: 10.3389/fpls.2017.01617 URL |
[32] |
Wang HH, Li X, Li X, et al. Long-term no-tillage and different residue amounts alter soil microbial community composition and increase the risk of maize root rot in northeast China[J]. Soil Tillage Res, 2020, 196:104452.
doi: 10.1016/j.still.2019.104452 URL |
[33] |
Feng YX, Hu YY, Wu JS, et al. Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease[J]. For Ecol Manag, 2019, 432:932-941.
doi: 10.1016/j.foreco.2018.10.028 URL |
[34] |
Dong L, Xu J, Feng G, et al. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system[J]. Sci Rep, 2016, 6:31802.
doi: 10.1038/srep31802 URL |
[35] | Zhao YP, Wu LK, Chu LX, et al. Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f. sp. heterophylla mediated by its root exudates in a consecutive monoculture system[J]. Sci Rep, 2015, 5(1):1-7. |
[36] |
Arzanlou M, Torbati M, Golmohammadi H. Powdery mildew on hazelnut(Corylus avellana)caused by Erysiphe corylacearum in Iran[J]. For Path, 2018, 48(5):e12450.
doi: 10.1111/efp.2018.48.issue-5 URL |
[37] |
Cho SE, Lee SH, et al. Erysiphe alphitoides causes powdery mildew on Eucalyptus gunnii[J]. For Path, 2018, 48(1):e12377.
doi: 10.1111/efp.2018.48.issue-1 URL |
[38] | Singh VK, Singh M, Singh SK, et al. Sustainable agricultural practices using beneficial fungi under changing climate scenario[M]// Climate Change and Agricultural Ecosystems. Amsterdam:Elsevier, 2019:25-42. |
[39] |
Al-Badi RS, Karunasinghe TG, Al-Sadi AM, et al. In vitro antagonistic activity of endophytic fungi isolated from shirazi thyme(Zataria multiflora boiss. )against Monosporascus cannonballus[J]. Pol J Microbiol, 2020, 69:1-5.
doi: 10.33073/pjm-2020-003 pmid: 32067440 |
[40] |
Anandham R, Premalatha N, Jee HJ, et al. Cultivable bacterial diversity and early plant growth promotion by the traditional organic formulations prepared using organic waste materials[J]. Int J Recycl Org Waste Agric, 2015, 4(4):279-289.
doi: 10.1007/s40093-015-0107-1 URL |
[41] |
Shen Z, Penton CR, Lv N, et al. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microb Ecol, 2018, 75(3):739-750.
doi: 10.1007/s00248-017-1052-5 URL |
[42] |
Liu N, Shao C, Sun H, et al. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng(Panax quinquefolius L. )growth under the continuous cropping regime[J]. Geoderma, 2020, 363:114155.
doi: 10.1016/j.geoderma.2019.114155 URL |
[43] |
Zhang J, Wei L, Yang J, et al. Probiotic consortia:reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of Panax notoginseng[J]. Front Microbiol, 2020, 11:701.
doi: 10.3389/fmicb.2020.00701 URL |
[44] | 张家春, 孙超, 李朝桢, 等. 不同种植年限白及土壤有机质、酶活性与白及有效成分研究[J]. 中药材, 2020, 43(1):1-4. |
Zhang JC, Sun C, Li CZ, et al. Study on soil organic matter, enzyme activity and the effective components of Bletilla striata under different planting years[J]. J Chin Med Mater, 2020, 43(1):1-4. | |
[45] | 宋旭红, 王钰, 李隆云, 等. 石柱黄连根腐病根际土壤细菌微生态研究[J]. 中国中药杂志, 2017, 42(7):1304-1311. |
Song XH, Wang Y, Li LY, et al. Research on bacteria microecology in root rot rhizosphere soil of Coptis chinensis produced in Shizhu city[J]. China J Chin Mater Med, 2017, 42(7):1304-1311. | |
[46] |
Liu LL, Huang XQ, Zhang JB, et al. Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities[J]. Soil Biol Biochem, 2020, 148:107909.
doi: 10.1016/j.soilbio.2020.107909 URL |
[47] | 刘东海, 张学江, 王鹏, 等. 不同施肥处理对小麦根际土壤真菌多样性及根腐病的影响[J]. 湖北农业科学, 2020, 59(21):30-34, 50. |
Liu DH, Zhang XJ, Wang P, et al. Effects of different fertilization treatments on wheat root rot and the diversity of fungi in rhizosphere soil[J]. Hubei Agric Sci, 2020, 59(21):30-34, 50. | |
[48] |
Zhao LY, Guan HL, Wang R, et al. Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of Bletilla striata[J]. J Soil Sci Plant Nutr, 2021, 21(2):1318-1328.
doi: 10.1007/s42729-021-00442-y URL |
[1] | SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2023, 39(2): 221-231. |
[2] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
[3] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[4] | CHEN Yu-jie, ZHENG Hua-bao, ZHOU Xin-yan. Modified High-throughput Sequencing Reveals the Effects of Different Algicides towards Algal Community [J]. Biotechnology Bulletin, 2022, 38(11): 70-79. |
[5] | CAO Xiu-kai, WANG Shan, GE Ling, ZHANG Wei-bo, SUN Wei. Advances in Extrachromosomal Circular DNA and Their Application in Domestic Animal Breeding [J]. Biotechnology Bulletin, 2022, 38(1): 247-257. |
[6] | MAO Ting, NIU Yong-yan, ZHENG Qun, YANG Tao, MU Yong-song, ZHU Ying, JI Bin, WANG Zhi-ye. Effects of Microbial Inoculants on the Fermentation Quality and Microbial Community Diversity of Alfalfa Silage [J]. Biotechnology Bulletin, 2021, 37(9): 86-94. |
[7] | TANG Die, ZHOU Qian. Research Advances in Plant Genome Assembly [J]. Biotechnology Bulletin, 2021, 37(6): 1-12. |
[8] | ZHU Bin, GAN Chen-chen, WANG Hong-cheng. Characteristics of the Complete Chloroplast Genome of Dendrobium thyrsiflorum and Its Phylogenetic Relationship Analysis [J]. Biotechnology Bulletin, 2021, 37(5): 38-47. |
[9] | ZHANG Shu-hua, FANG Qian, JIA Hong-mei, HAN Gui-qi, YAN Zhu-yun, HE Dong-mei. Difference Analysis of Fungal Community Among Bulk Soil,Rhizosphere and Rhizomes of Ligusticum chuanxiong Hort. [J]. Biotechnology Bulletin, 2021, 37(4): 56-69. |
[10] | GUO Yan-ping, ZHANG Hao, ZHAO Xin-gang, LUO Hai-ling, ZHANG Ying-jun. Applications of DNA Metabarcoding in Diet Identification of Herbivores [J]. Biotechnology Bulletin, 2021, 37(3): 252-260. |
[11] | ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand [J]. Biotechnology Bulletin, 2021, 37(10): 196-202. |
[12] | LI Ye-qing, JING Zhang-mu, JIANG Hao, XU Quan, ZHOU Hong-jun, FENG Lu. Microbiome and Its Research Progress of Anaerobic Digestion [J]. Biotechnology Bulletin, 2021, 37(1): 90-101. |
[13] | WANG Hong-jie, LIU Shao-dong, LIU Rui-hua, ZHANG Si-ping, YANG Jun, PANG Chao-you. Effects of Crop Rotation on Bacterial Communities in Cotton Rhizosphere Soil [J]. Biotechnology Bulletin, 2020, 36(9): 117-124. |
[14] | ZHANG Miao, CHEN Yu-feng, CHEN Long, HUANG Piao-ling, WEI Lu-ling. Difference Analysis of the Community Diversity of Fungi in the Rhizosphere Soil of Zanthoxylum nitidum(Roxb.)DC in Different Regions [J]. Biotechnology Bulletin, 2020, 36(9): 167-179. |
[15] | HUANG Ting, FANG Yuan, FENG Zhou, SHEN He, NIE Yong, ZHENG Xin, WANG Jia-quan, XU Zi-mu. Bacterial Communities in a Middle School Campus Assessed by High-throughput Sequencing [J]. Biotechnology Bulletin, 2020, 36(8): 96-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||