Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (3): 113-120.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0626
Previous Articles Next Articles
HAN Dong-jing(), WANG Zhi-hua, ZHOU Ning, LIU Guo-qing(), YANG Shao-hua, WANG Wen-jun
Received:
2021-05-13
Online:
2022-03-26
Published:
2022-04-06
Contact:
LIU Guo-qing
E-mail:1287536735@.qq.com;13675512000@163.com
HAN Dong-jing, WANG Zhi-hua, ZHOU Ning, LIU Guo-qing, YANG Shao-hua, WANG Wen-jun. Screening and Degradation Effect of Lignin-degrading Bacteria in Termite Nurseries[J]. Biotechnology Bulletin, 2022, 38(3): 113-120.
Fig. 7 Scanning electron micrographs before and after alkaline lignin treatment A:Untreated alkaline lignin. B:Alkaline lignin from bacterial RS-1 treatment for 7 d
[1] |
Paananen H, Eronen E, Mäkinen M, et al. Base-catalyzed oxidative depolymerization of softwood kraft lignin[J]. Ind Crops Prod, 2020, 152:112473.
doi: 10.1016/j.indcrop.2020.112473 URL |
[2] |
Zakzeski J, Bruijnincx PCA, Jongerius AL, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev, 2010, 110(6):3552-3599.
doi: 10.1021/cr900354u pmid: 20218547 |
[3] |
Kong FG, Parhiala K, Wang SJ, et al. Preparation of cationic softwood kraft lignin and its application in dye removal[J]. Eur Polym J, 2015, 67:335-345.
doi: 10.1016/j.eurpolymj.2015.04.004 URL |
[4] |
Kuppuraj SP, Venkidasamy B, Selvaraj D, et al. Comprehensive in silico and gene expression profiles of MnP family genes in Phanerochaete chrysosporium towards lignin biodegradation[J]. Int Biodeterior Biodegrad, 2021, 157:105143.
doi: 10.1016/j.ibiod.2020.105143 URL |
[5] | 何娟. 假木质素的形成及其对纤维素糖化影响机理研究[D]. 南京:南京林业大学, 2020. |
He J. Study on the generation of pseudo lignin and its mechanism on the saccharification of cellulose[D]. Nanjing:Nanjg Forestry University, 2020. | |
[6] |
Venkatesagowda B. Enzymatic demethylation of lignin for potential biobased polymer applications[J]. Fungal Biol Rev, 2019, 33(3/4):190-224.
doi: 10.1016/j.fbr.2019.06.002 URL |
[7] |
Masai E, Katayama Y, Fukuda M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds[J]. Biosci Biotechnol Biochem, 2007, 71(1):1-15.
doi: 10.1271/bbb.60437 URL |
[8] |
Kamimura N, Sakamoto S, Mitsuda N, et al. Advances in microbial lignin degradation and its applications[J]. Curr Opin Biotechnol, 2019, 56:179-186.
doi: 10.1016/j.copbio.2018.11.011 URL |
[9] |
Ragauskas AJ, Beckham GT, Biddy MJ, et al. Lignin valorization:improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185):1246843.
doi: 10.1126/science.1246843 URL |
[10] |
Rahmanpour R, Bugg TD. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5:Oxidation of Mn(II)and polymeric lignin by Dyp1B[J]. Arch Biochem Biophys, 2015, 574:93-98.
doi: 10.1016/j.abb.2014.12.022 pmid: 25558792 |
[11] |
Kamimura N, Takahashi K, Mori K, et al. Bacterial catabolism of lignin-derived aromatics:New findings in a recent decade:Update on bacterial lignin catabolism[J]. Environ Microbiol Rep, 2017, 9(6):679-705.
doi: 10.1111/emi4.2017.9.issue-6 URL |
[12] |
Tanaka H, Koike K, Itakura S, et al. Degradation of wood and enzyme production by Ceriporiopsis subvermispora[J]. Enzyme Microb Technol, 2009, 45(5):384-390.
doi: 10.1016/j.enzmictec.2009.06.003 URL |
[13] |
Peng X, Yuan XZ, Zeng GM, et al. Synchronous extraction of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium fermentation broth[J]. Sep Purif Technol, 2014, 123:164-170.
doi: 10.1016/j.seppur.2013.12.009 URL |
[14] |
Srivastava P, Andersen PC, Marois JJ, et al. Effect of phenolic compounds on growth and ligninolytic enzyme production in Botryosphaeria isolates[J]. Crop Prot, 2013, 43:146-156.
doi: 10.1016/j.cropro.2012.09.015 URL |
[15] |
Zhao C, Xie SX, Pu YQ, et al. Synergistic enzymatic and microbial lignin conversion[J]. Green Chem, 2016, 18(5):1306-1312.
doi: 10.1039/C5GC01955A URL |
[16] |
Brown ME, Chang MC. Exploring bacterial lignin degradation[J]. Curr Opin Chem Biol, 2014, 19:1-7.
doi: 10.1016/j.cbpa.2013.11.015 URL |
[17] |
Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nat Biotechnol, 2007, 25(7):759-761.
doi: 10.1038/nbt1316 URL |
[18] | 张鹏飞, 李素艳, 余克非, 等. 木质素降解细菌的筛选及园林废弃物降解研究[J]. 安徽农业大学学报, 2018, 45(4):676-681. |
Zhang PF, Li SY, Yu KF, et al. Screening of lignin-degrading bacteria and study on degradation of garden waste[J]. J Anhui Agric Univ, 2018, 45(4):676-681. | |
[19] | 崔家荣, 段开红. 柠条木质素降解菌的筛选及其降解条件优化[J]. 安徽农业科学, 2019, 47(19):107-109, 124. |
Cui JR, Duan KH. Screening of lignin degrading bacteria of Caragana korshinskii and optimization of its degradation conditions[J]. J Anhui Agric Sci, 2019, 47(19):107-109, 124. | |
[20] | 王晶, 倪金荧, 王利群, 等. 一株木质素降解细菌的筛选及其降解途径的探究[J]. 化工进展, 2021, 40(7):4021-4026. |
Wang J, Ni JY, Wang LQ, et al. Screening of a lignin degrading bacterium and its degradation pathway[J]. Chemical Progress, 2021, 40(7):4021-4026. | |
[21] | 李锋. 白蚁肠道降解木质素细菌资源挖掘及代谢过程与机制研究[D]. 镇江:江苏大学, 2019. |
Li F. Research on the symbiotic bacteria on lignin degradation from termite guts system and its metabolic mechanism[D]. Zhenjiang:Jiangsu University, 2019. | |
[22] | 兰雁, 袁艳芳, 付学, 等. 云杉木质素高降解的菌株筛选[J]. 森林与环境学报, 2019, 39(1):82-87. |
Lan Y, Yuan YF, Fu X, et al. Screening of highly lignin-degrading fungi from Pinus schrenkiana[J]. J For Environ, 2019, 39(1):82-87. | |
[23] | 尚洁, 刘继芳, 陇琼, 等. 小麦秸秆产锰过氧化物酶白腐真菌的筛选及产酶条件优化[J]. 饲料研究, 2020, 43(6):63-67. |
Shang J, Liu JF, Long Q, et al. Screening of high yield manganese peroxidase white-rot fungi for bioprocessing of wheat straw and optimization of enzyme production conditions[J]. Feed Res, 2020, 43(6):63-67. | |
[24] |
Saito Y, Tsuchida H, Matsumoto T, et al. Screening of fungi for decomposition of lignin-derived products from Japanese cedar[J]. J Biosci Bioeng, 2018, 126(5):573-579.
doi: 10.1016/j.jbiosc.2018.05.001 URL |
[25] |
Fackler K, Gradinger C, Hinterstoisser B, et al. Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy[J]. Enzyme Microb Technol, 2006, 39(7):1476-1483.
doi: 10.1016/j.enzmictec.2006.03.043 URL |
[26] | 张来丽, 李刚, 毛润乾. 白蚁肠道微生物降解木质素研究进展[J]. 湖北农业科学, 2011, 50(3):433-436. |
Zhang LL, Li G, Mao RQ. Research progress on the degradation of lignin by termites intestinal microflora[J]. Hubei Agric Sci, 2011, 50(3):433-436. | |
[27] | 王巍. 白蚁肠道木质素分解菌的分离鉴定及PY12 LiP基因的克隆与序列分析[D]. 长春:吉林农业大学, 2013. |
Wang W. Isolation and identification of lignin-degrading isolates in termite gut and the cloning of LiP gene[D]. Changchun:Jilin Agricultural University, 2013. | |
[28] | 周峰. 土白蚁属白蚁(Odontotermes)肠道细菌多样性及其降解木质纤维素的功能研究[D]. 镇江:江苏大学, 2017. |
Zhou F. The diversity of termite symbiotic bacteria from Odontoter-mes guts and their potential lignocellulytic functions[D]. Zhenjiang:Jiangsu University, 2017. | |
[29] |
Ping LF, Guo Q, Chen XY, et al. Biodegradation of Pyrene and benzo[a]Pyrene in the liquid matrix and soil by a newly identified Raoultella planticola strain[J]. 3 Biotech, 2017, 7(1):1-10.
doi: 10.1007/s13205-016-0582-8 URL |
[30] |
李锋, 黄庶识. 白蚁肠道木质素降解菌分离鉴定及其降解特性[J]. 生物技术通报, 2020, 36(8):61-68.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0128 |
Li F, Huang SS. Isolation and identification of lignin-degrading bacteria from the gut of termite and their degradation characteristics[J]. Biotechnol Bull, 2020, 36(8):61-68. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||