Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (4): 126-142.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1048
Previous Articles Next Articles
JIN Jiao-jiao1(
), LIU Zi-gang2, MI Wen-bo2, XU Ming-xia2, ZOU Ya2, XU Chun-mei2, ZHAO Cai-xia3
Received:2021-08-17
Online:2022-04-26
Published:2022-05-06
JIN Jiao-jiao, LIU Zi-gang, MI Wen-bo, XU Ming-xia, ZOU Ya, XU Chun-mei, ZHAO Cai-xia. Identification of Low Temperature Stress-responsive Genes Regulating Photosynthetic Characteristics in the Leaves of Brassica napus by RNA-Seq[J]. Biotechnology Bulletin, 2022, 38(4): 126-142.
| KEGG通路 KEGG pathway | 基因号 Gene ID | 引物序列 Sequence of primer(5'-3') | 扩增长度 Amplification length/bp | 扩增效率 Amplification efficiency/% |
|---|---|---|---|---|
| P | ncbi_106366341 | AGATCCTAATGCCACCATCATC(F) | 100 | 101.80 |
| GTAGTCCTCATGCTCCTCAAAG(R) | ||||
| ncbi_106360470 | CTCCTTACAACCCACTTCAGAG(F) | 100 | 96.80 | |
| GAGCCACCTCCAAGAATCAA(R) | ||||
| ncbi_106400646 | CTACCGACAAGAAGTCCATCAC(F) | 102 | 88.28 | |
| AGGCAGTCTCACCGAAGTA(R) | ||||
| ncbi_106430073 | GCAGAGGCAAGGATCAAAGA(F) | 99 | 93.16 | |
| GTAAGGACGACGGAGGAAATAAG(R) | ||||
| ncbi_106381576 | GCAGAGGCAAGGATCAAAGA(F) | 99 | 100.09 | |
| GTAAGGACGACGGAGGAAATAAG(R) | ||||
| ncbi_106401683 | CCGAGATTTGCTCTCCTTATCC(F) | 119 | 103.61 | |
| CCGACGTATCTTTCACGTACTC(R) | ||||
| ncbi_106405529 | CTCCTTACAACCCACTTCAGAG(F) | 100 | 95.07 | |
| GAGCCTCCTCCAAGAATCAAA(R) | ||||
| ncbi_106350097 | CATAACACCAGATGGAGAGAAGG(F) | 149 | 102.17 | |
| CAACCGAGCCAGAGACTATTT(R) | ||||
| PAP | ncbi_106371874 | TAGCTGGAGATTACGGGTTTG(F) | 143 | 122.90 |
| GGTACGAAGTAGGTCGGTTAAG(R) | ||||
| ncbi_106382137 | CTCGGAAACCCTAACTTGATCC(F) | 100 | 101.97 | |
| CACCTCCAATTCTGTACCCTTC(R) | ||||
| ncbi_106439795 | AACCGTGAGCTCGAAGTAATC(F) | 100 | 98.06 | |
| CTCCGAATTTGACTCCGTTCT(R | ||||
| ncbi_106349237 | AACCGTGAGCTCGAAGTAATC(F) | 131 | 102.84 | |
| ATCTGAGAACCTGCCTTGAAC(R) | ||||
| ncbi_106396209 | GAAGGTGGGCTCGACTATTT(F) | 112 | 94.26 | |
| CGACTCTGTAACCCTCAACAG(R) | ||||
| ncbi_106447496 | GAAGGAGGGCTTGACTACTTG(F) | 99 | 103.51 | |
| CTCAACAGCTCCCATGAGAAT(R) | ||||
| ncbi_106447497 | AAACGGAAGGTTGGCTATGT(F) | 96 | 100.88 | |
| GCCAAATGGTCAGCAAGATTC(R) | ||||
| ncbi_106421061 | CTGTCAAGCAAGGAGCAAAC(F) | 102 | 97.35 | |
| CAAGAGGGTCGAATCCATAGTC(R) | ||||
| ncbi_106440450 | AACCTTGTTCTGGCTGTAGTT(F) | 98 | 93.57 | |
| GGGTGTAGCTTGTCCTCAAA(R) | ||||
| RG | Bnactin-F | TCCATCCATCGTCCACAG | 106.80 | |
| Bnactin-R | GCATCATCACAAGCATCCTT |
Table 1 qRT-PCR primers used in this study
| KEGG通路 KEGG pathway | 基因号 Gene ID | 引物序列 Sequence of primer(5'-3') | 扩增长度 Amplification length/bp | 扩增效率 Amplification efficiency/% |
|---|---|---|---|---|
| P | ncbi_106366341 | AGATCCTAATGCCACCATCATC(F) | 100 | 101.80 |
| GTAGTCCTCATGCTCCTCAAAG(R) | ||||
| ncbi_106360470 | CTCCTTACAACCCACTTCAGAG(F) | 100 | 96.80 | |
| GAGCCACCTCCAAGAATCAA(R) | ||||
| ncbi_106400646 | CTACCGACAAGAAGTCCATCAC(F) | 102 | 88.28 | |
| AGGCAGTCTCACCGAAGTA(R) | ||||
| ncbi_106430073 | GCAGAGGCAAGGATCAAAGA(F) | 99 | 93.16 | |
| GTAAGGACGACGGAGGAAATAAG(R) | ||||
| ncbi_106381576 | GCAGAGGCAAGGATCAAAGA(F) | 99 | 100.09 | |
| GTAAGGACGACGGAGGAAATAAG(R) | ||||
| ncbi_106401683 | CCGAGATTTGCTCTCCTTATCC(F) | 119 | 103.61 | |
| CCGACGTATCTTTCACGTACTC(R) | ||||
| ncbi_106405529 | CTCCTTACAACCCACTTCAGAG(F) | 100 | 95.07 | |
| GAGCCTCCTCCAAGAATCAAA(R) | ||||
| ncbi_106350097 | CATAACACCAGATGGAGAGAAGG(F) | 149 | 102.17 | |
| CAACCGAGCCAGAGACTATTT(R) | ||||
| PAP | ncbi_106371874 | TAGCTGGAGATTACGGGTTTG(F) | 143 | 122.90 |
| GGTACGAAGTAGGTCGGTTAAG(R) | ||||
| ncbi_106382137 | CTCGGAAACCCTAACTTGATCC(F) | 100 | 101.97 | |
| CACCTCCAATTCTGTACCCTTC(R) | ||||
| ncbi_106439795 | AACCGTGAGCTCGAAGTAATC(F) | 100 | 98.06 | |
| CTCCGAATTTGACTCCGTTCT(R | ||||
| ncbi_106349237 | AACCGTGAGCTCGAAGTAATC(F) | 131 | 102.84 | |
| ATCTGAGAACCTGCCTTGAAC(R) | ||||
| ncbi_106396209 | GAAGGTGGGCTCGACTATTT(F) | 112 | 94.26 | |
| CGACTCTGTAACCCTCAACAG(R) | ||||
| ncbi_106447496 | GAAGGAGGGCTTGACTACTTG(F) | 99 | 103.51 | |
| CTCAACAGCTCCCATGAGAAT(R) | ||||
| ncbi_106447497 | AAACGGAAGGTTGGCTATGT(F) | 96 | 100.88 | |
| GCCAAATGGTCAGCAAGATTC(R) | ||||
| ncbi_106421061 | CTGTCAAGCAAGGAGCAAAC(F) | 102 | 97.35 | |
| CAAGAGGGTCGAATCCATAGTC(R) | ||||
| ncbi_106440450 | AACCTTGTTCTGGCTGTAGTT(F) | 98 | 93.57 | |
| GGGTGTAGCTTGTCCTCAAA(R) | ||||
| RG | Bnactin-F | TCCATCCATCGTCCACAG | 106.80 | |
| Bnactin-R | GCATCATCACAAGCATCCTT |
| 反应物 Reagent | 体积Volume/μL |
|---|---|
| SYBRR Premix Ex Taq TM II | 10 |
| Forward primer | 0.8 |
| Reverse primer | 0.8 |
| ROX Reference Dye II | 0.4 |
| Template cDNA | 2 |
| ddH2O | 6 |
Table 2 qPCR reaction system
| 反应物 Reagent | 体积Volume/μL |
|---|---|
| SYBRR Premix Ex Taq TM II | 10 |
| Forward primer | 0.8 |
| Reverse primer | 0.8 |
| ROX Reference Dye II | 0.4 |
| Template cDNA | 2 |
| ddH2O | 6 |
Fig.3 Influence of low temperature to conductivity in rapeseed leaves Different capital letters indicate significant differences at P<0.01 level. The same below
| 组合 Paired comparison | 显著上调差异基因数 Significantly up-regulated differential genes | 显著下调差异基因数 Significantly down-regulated differential genes | 总差异基因数 Significantly different number of genes |
|---|---|---|---|
| NF24 t0 - NF24 t | 12 583 | 24 414 | 36 997 |
| 17NS t0 - 17NS t | 11 710 | 23 141 | 34 851 |
| NF24 t0-17NS t0 | 10 708 | 8 270 | 18 978 |
| NF24 t - 17NS t | 11 447 | 10 572 | 22 019 |
Table 3 All significantly differentially expressed genes identified by RNA-Seq
| 组合 Paired comparison | 显著上调差异基因数 Significantly up-regulated differential genes | 显著下调差异基因数 Significantly down-regulated differential genes | 总差异基因数 Significantly different number of genes |
|---|---|---|---|
| NF24 t0 - NF24 t | 12 583 | 24 414 | 36 997 |
| 17NS t0 - 17NS t | 11 710 | 23 141 | 34 851 |
| NF24 t0-17NS t0 | 10 708 | 8 270 | 18 978 |
| NF24 t - 17NS t | 11 447 | 10 572 | 22 019 |
| 基因号 Gene ID | 基因表达特性 Gene expression characteristics | 基因描述 Description |
|---|---|---|
| ncbi_106366341 | 下调 Down | 铁氧还蛋白—NADP还原酶,叶同工酶1,类叶绿体; Ferredoxin-NADP reductase,leaf isozyme 1,and chloroplastic-like |
| ncbi_106360470 | 光系统I反应中心亚基VI,类叶绿体; Photosystem I reaction center subunit VI,and chloroplastic-like | |
| ncbi_106400646 | 进化氧增强蛋白2,叶绿体; Oxygen-evolving enhancer protein 2,and chloroplastic | |
| ncbi_106430073 | ATP合酶链1,类叶绿体; ATP synthase gamma chain 1,and chloroplastic-like | |
| ncbi_106381576 | ATP合酶链1,类叶绿体; ATP synthase gamma chain 1,and chloroplastic-like | |
| ncbi_106405529 | 光系统I反应中心亚基VI,类叶绿体; Photosystem I reaction center subunit VI,and chloroplastic-like | |
| ncbi_106401683 | 光系统II修复蛋白PSB27-H1,叶绿体; Photosystem II repair protein PSB27-H1,and chloroplastic | |
| ncbi_106350097 | 上调 Up | 铁氧还蛋白-1,叶绿体; Ferredoxin-1,and chloroplastic |
| ncbi_106371874 | 下调 Down | 光系统I叶绿素a/b结合蛋白5,类叶绿体 Photosystem I chlorophyll a/b-binding protein 5,and chloroplastic-like |
| ncbi_106382137 | 叶绿素a-b结合蛋白2.4,类叶绿体; Chlorophyll a-b binding protein 2.4,and chloroplastic-like | |
| ncbi_106439795 | 叶绿素a-b结合蛋白2.1,叶绿体; Chlorophyll a-b binding protein 2.1,and chloroplastic | |
| ncbi_106349237 | 叶绿素a-b结合蛋白2.4,类叶绿体; Chlorophyll a-b binding protein 2.4,and chloroplastic-like | |
| ncbi_106396209 | 叶绿素a-b结合蛋白1,叶绿体; Chlorophyll a-b binding protein 1,and chloroplastic | |
| ncbi_106447496 | 叶绿素a-b结合蛋白1,叶绿体; Chlorophyll a-b binding protein 1,and chloroplastic | |
| ncbi_106447497 | 叶绿素a-b结合蛋白1,叶绿体; Chlorophyll a-b binding protein 1,and chloroplastic-like | |
| ncbi_106421061 | 光系统I叶绿素a/b结合蛋白3-1,叶绿体; Photosystem I chlorophyll a/b-binding protein 3-1,and chloroplastic | |
| ncbi_106440450 | 上调 Up | 叶绿素a-b结合蛋白CP26,类叶绿体; Chlorophyll a-b binding protein CP26,and chloroplastic-like |
Table 4 Genetic information of 17 differentially expressed genes
| 基因号 Gene ID | 基因表达特性 Gene expression characteristics | 基因描述 Description |
|---|---|---|
| ncbi_106366341 | 下调 Down | 铁氧还蛋白—NADP还原酶,叶同工酶1,类叶绿体; Ferredoxin-NADP reductase,leaf isozyme 1,and chloroplastic-like |
| ncbi_106360470 | 光系统I反应中心亚基VI,类叶绿体; Photosystem I reaction center subunit VI,and chloroplastic-like | |
| ncbi_106400646 | 进化氧增强蛋白2,叶绿体; Oxygen-evolving enhancer protein 2,and chloroplastic | |
| ncbi_106430073 | ATP合酶链1,类叶绿体; ATP synthase gamma chain 1,and chloroplastic-like | |
| ncbi_106381576 | ATP合酶链1,类叶绿体; ATP synthase gamma chain 1,and chloroplastic-like | |
| ncbi_106405529 | 光系统I反应中心亚基VI,类叶绿体; Photosystem I reaction center subunit VI,and chloroplastic-like | |
| ncbi_106401683 | 光系统II修复蛋白PSB27-H1,叶绿体; Photosystem II repair protein PSB27-H1,and chloroplastic | |
| ncbi_106350097 | 上调 Up | 铁氧还蛋白-1,叶绿体; Ferredoxin-1,and chloroplastic |
| ncbi_106371874 | 下调 Down | 光系统I叶绿素a/b结合蛋白5,类叶绿体 Photosystem I chlorophyll a/b-binding protein 5,and chloroplastic-like |
| ncbi_106382137 | 叶绿素a-b结合蛋白2.4,类叶绿体; Chlorophyll a-b binding protein 2.4,and chloroplastic-like | |
| ncbi_106439795 | 叶绿素a-b结合蛋白2.1,叶绿体; Chlorophyll a-b binding protein 2.1,and chloroplastic | |
| ncbi_106349237 | 叶绿素a-b结合蛋白2.4,类叶绿体; Chlorophyll a-b binding protein 2.4,and chloroplastic-like | |
| ncbi_106396209 | 叶绿素a-b结合蛋白1,叶绿体; Chlorophyll a-b binding protein 1,and chloroplastic | |
| ncbi_106447496 | 叶绿素a-b结合蛋白1,叶绿体; Chlorophyll a-b binding protein 1,and chloroplastic | |
| ncbi_106447497 | 叶绿素a-b结合蛋白1,叶绿体; Chlorophyll a-b binding protein 1,and chloroplastic-like | |
| ncbi_106421061 | 光系统I叶绿素a/b结合蛋白3-1,叶绿体; Photosystem I chlorophyll a/b-binding protein 3-1,and chloroplastic | |
| ncbi_106440450 | 上调 Up | 叶绿素a-b结合蛋白CP26,类叶绿体; Chlorophyll a-b binding protein CP26,and chloroplastic-like |
| [1] | 姜丽霞, 王萍, 王冬冬, 等. 2013年黑龙江省春季低温特征及对主要农作物播种期的影响[J]. 中国农业气象, 2019, 40(2):114-125. |
| Jiang LX, Wang P, Wang DD, et al. Characteristics of low temperature in spring and its effect on crops seeding dates in 2013 in Heilongjiang Province[J]. Chin J Agrometeorology, 2019, 40(2):114-125. | |
| [2] |
Lu Q, Li J, Wang J, et al. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium[J]. Bioresour Technol, 2017, 244(pt 1):542-551.
doi: 10.1016/j.biortech.2017.08.005 URL |
| [3] | 刘文彬. 低温冷害对农作物生长发育的影响[J]. 黑龙江科技信息, 2011(19):204. |
| Liu WB. Effects of chilling injury on crop growth and developmen[J]. Heilongjiang Sci Technol Inf, 2011(19):204. | |
| [4] |
Dahanayake SR, Galwey NW. Effects of interactions between low-temperature treatments, gibberellin(GA3)and photoperiod on flowering and stem height of spring rape(Brassica napus var. annua)[J]. Ann Bot, 1999, 84(3):321-327.
doi: 10.1006/anbo.1999.0920 URL |
| [5] | 涂玉琴, 戴兴临. 花期低温阴雨对甘蓝型油菜产量和种子含油量的影响[J]. 中国油料作物学报, 2011, 33(5):470-475. |
| Tu YQ, Dai XL. Effects of continuous low temperature overcast and rainy weather on yield and oil content of Brassica napus during flowering stage[J]. Chin J Oil Crop Sci, 2011, 33(5):470-475. | |
| [6] | 卢坤, 张琳, 曲存民, 等. 利用RNA-Seq鉴定甘蓝型油菜叶片干旱胁迫应答基因[J]. 中国农业科学, 2015, 48(4):630-645. |
| Lu K, Zhang L, Qu CM, et al. Identification of drought stress-responsive genes in leaves of Brassica napus by RNA sequencing[J]. Sci Agric Sin, 2015, 48(4):630-645. | |
| [7] | 陈永川, 张林, 杨红艳. 低温冷害对农作物的危害及其防御措施[J]. 现代农业科技, 2011(4):307. |
| Chen YC, Zhang L, Yang HY. The harm of low temperature chilling injury to crops and its preventive measures[J]. Mod Agric Sci Technol, 2011(4):307. | |
| [8] | 何跃君, 薛立, 任向荣, 等. 低温胁迫对六种苗木生理特性的影响[J]. 生态学杂志, 2008, 27(4):524-531. |
| He YJ, Xue L, Ren XR, et al. Effects of low temperature stress on physiological characteristics of six tree species seedlings[J]. Chin J Ecol, 2008, 27(4):524-531. | |
| [9] | 许楠, 孙广玉. 低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应[J]. 应用生态学报, 2009, 20(4):761-766. |
| Xu N, Sun GY. Responses of mulberry seedlings photosynjournal and antioxidant enzymes to chilling stress after low-temperature acclimation[J]. Chin J Appl Ecol, 2009, 20(4):761-766. | |
| [10] | Oquist G. Effects of low temperature on photosynjournal[J]. Plant Cell Environ, 1983, 6(4):281-300. |
| [11] | Zhuang WF, Wu XJ, Yang M, et al. Influence of low-temperature stress on photosynthetic traits in maize seedlings[J]. J Northeast Agric Univ:Engl Ed, 2013, 20(3):1-5. |
| [12] |
Holá D, Langrová K, Kočová M, et al. Photosynthetic parameters of maize(Zea mays L.)inbred lines and F1 hybrids:their different response to, and recovery from rapid or gradual onset of low-temperature stress[J]. Photosynthetica, 2003, 41(3):429-442.
doi: 10.1023/B:PHOT.0000015468.67892.9c URL |
| [13] | 陈建林, 查丁石, 吴雪霞. 低温胁迫对茄子幼苗生理生化的影响[J]. 中国蔬菜, 2006(11):21-23. |
| Chen JL, Zha DS, Wu XX. Effects of low temperature stress on physiology and biochemistry of eggplant seedlings[J]. China Veg, 2006(11):21-23. | |
| [14] | 李晓靖, 崔海军. 低温胁迫下植物光合生理研究进展[J]. 山东林业科技, 2018, 48(6):90-94. |
| Li XJ, Cui HJ. Research progress on the physiological response of plants to environmental stress[J]. J Shandong For Sci Technol, 2018, 48(6):90-94. | |
| [15] |
Astakhova NV, Popov VN, Selivanov AA, et al. Reorganization of chloroplast ultrastructure associated with low-temperature hardening of Arabidopsis plants[J]. Russ J Plant Physiol, 2014, 61(6):744-750.
doi: 10.1134/S102144371406003X URL |
| [16] |
Arthikala MK, Sánchez-López R, Nava N, et al. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization[J]. New Phytol, 2014, 202(3):886-900.
doi: 10.1111/nph.12714 URL |
| [17] |
Shi Y, Gong Z. One SNP in COLD1 determines cold tolerance during rice domestication[J]. J Genet Genomics, 2015, 42(4):133-134.
doi: 10.1016/j.jgg.2015.03.007 URL |
| [18] | 杨刚, 史鹏辉, 孙万仓, 等. 白菜型冬油菜质外体抗冻蛋白研究[J]. 中国生态农业学报, 2016, 24(2):210-217. |
| Yang G, Shi PH, Sun WC, et al. Study on apoplast anti-freeze proteins in winter turnip rape(Brassica rape L.)[J]. Chin J Eco Agric, 2016, 24(2):210-217. | |
| [19] |
Huang Q, Qian X, Jiang T, et al. Effect of eugenol fumigation treatment on chilling injury and CBF gene expression in eggplant fruit during cold storage[J]. Food Chem, 2019, 292:143-150.
doi: 10.1016/j.foodchem.2019.04.048 URL |
| [20] | 王政, 姚银安, 张志燕, 等. 甘蓝型油菜几丁质酶基因BnCHB4环境信号响应分析[J]. 生物学杂志, 2012, 29(6):32-34, 38. |
| Wang Z, Yao YA, Zhang ZY, et al. Response to environmental cues of BnCHB4 from Brassica napus[J]. J Biol, 2012, 29(6):32-34, 38. | |
| [21] | 张腾国, 罗丹瑜, 郭艳峰, 等. 油菜RbohB基因的克隆及逆境响应表达分析[J]. 植物研究, 2017, 37(5):751-760. |
| Zhang TG, Luo DY, Guo YF, et al. Cloning and expression analysis of RbohB gene in Brassica campestris L[J]. Bull Bot Res, 2017, 37(5):751-760. | |
| [22] | 杨佳, 曹黎明, 周继华, 等. 水稻耐低温基因COLD1功能标记的开发及应用[J]. 分子植物育种, 2019, 17(18):6028-6032. |
| Yang J, Cao LM, Zhou JH, et al. Development and application of functional marker of chilling tolerance gene, COLD1, in rice[J]. Mol Plant Breed, 2019, 17(18):6028-6032. | |
| [23] | 王冰, 王勤方, 唐天向, 等. 转录组分析挖掘油菜耐旱基因[J]. 基因组学与应用生物学, 2018, 37(11):4775-4786. |
| Wang B, Wang QF, Tang TX, et al. Discovery of drought-tolerant genes in Brassica napus by transcriptome analysis[J]. Genom Appl Biol, 2018, 37(11):4775-4786. | |
| [24] |
Horvath DP, McLarney BK, Thomashow MF. Regulation of Arabidopsis thaliana L. (heyn)cor78 in response to low temperature[J]. Plant Physiol, 1993, 103(4):1047-1053.
pmid: 8290624 |
| [25] |
Zhang Z, Li J, Li F, et al. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance[J]. Dev Cell, 2017, 43(6):731-743.e5.
doi: 10.1016/j.devcel.2017.11.016 URL |
| [26] | 陈珊, 王晓晨, 邝健飞, 等. 黄瓜果实耐冷性与CsHSFs基因表达关系的研究[J]. 华南农业大学学报, 2015, 36(5):85-91. |
| Chen S, Wang XC, Kuang JF, et al. The expressions of CsHSFs gene in relation to chilling tolerance of cucumber fruits[J]. J South China Agric Univ, 2015, 36(5):85-91. | |
| [27] |
Talanova VV, Titov AF, Topchieva LV, et al. Effect of stress factors on expression of the gene encoding a CBF transcription factor in cucumber plants[J]. Dokl Biol Sci, 2008, 423:419-421.
doi: 10.1134/S001249660806015X URL |
| [28] | 刘自刚, 张长生, 孙万仓, 等. 不同生态区冬前低温下白菜型冬油菜不同抗寒品种(系)的比较[J]. 作物学报, 2014, 40(2):346-354. |
|
Liu ZG, Zhang CS, Sun WC, et al. Comparison of winter rapeseed varieties(lines)with different cold resistance planted in the northern-extending regions in China under low temperature before winter[J]. Acta Agron Sin, 2014, 40(2):346-354.
doi: 10.3724/SP.J.1006.2014.00346 URL |
|
| [29] | 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000. |
| Zou Q. Experimental Guidance on Plant Physiology[M]. Beijing: China Agricultural Press, 2000. | |
| [30] |
张屹清, 林路友, 路争. 严格厌氧菌铁氧还蛋白的研究进展[J]. 微生物学报, 2021. DOI: 10.13343/j.cnki.wsxb,20210146.
doi: 10.13343/j.cnki.wsxb,20210146 |
|
Zhang YQ, Lin LY, Lu Z. Advances of ferredoxins from strictly anaerobic bacteria[J]. Acta Microbiol Sin, 2021. DOI: 10.13343/j.cnki.wsxb,20210146.
doi: 10.13343/j.cnki.wsxb,20210146 |
|
| [31] |
Farquhar GD, Sharkey TD. Stomatal conductance and photosynjournal[J]. Annu Rev Plant Physiol, 1982, 33(1):317-345.
doi: 10.1146/annurev.pp.33.060182.001533 URL |
| [32] | 杨碧云, 叶丽萍, 钟凤林, 等. 低温处理对紫色小白菜品质及光合特性的影响[J]. 安徽农业大学学报, 2019, 46(1):173-180. |
| Yang BY, Ye LP, Zhong FL, et al. Effects of low-temperature stress on the quality and photosynthetic characteristics of purple cabbage[J]. J Anhui Agric Univ, 2019, 46(1):173-180. | |
| [33] |
武辉, 戴海芳, 张巨松, 等. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应[J]. 植物生态学报, 2014, 38(10):1124-1134.
doi: 10.3724/SP.J.1258.2014.00107 |
|
Wu H, Dai HF, Zhang JS, et al. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves[J]. Chin J Plant Ecol, 2014, 38(10):1124-1134.
doi: 10.3724/SP.J.1258.2014.00107 URL |
|
| [34] | 许耀照, 张芬琴, 陈修斌, 等. 低温胁迫对彩椒幼苗生长指标及光合特性的影响[J]. 山西农业大学学报:自然科学版, 2019, 39(1):68-72. |
| Xu YZ, Zhang FQ, Chen XB, et al. Effects of low temperature stress on growth index and photosynthetic characteristics of pepper seedlings[J]. J Shanxi Agric Univ:Nat Sci Ed, 2019, 39(1):68-72. | |
| [35] | 田景花, 王红霞, 张志华, 等. 低温逆境对不同核桃品种抗氧化系统及超微结构的影响[J]. 应用生态学报, 2015, 26(5):1320-1326. |
| Tian JH, Wang HX, Zhang ZH, et al. Effects of chilling stress on antioxidant system and ultrastructure of walnut cultivars[J]. Chin J Appl Ecol, 2015, 26(5):1320-1326. | |
| [36] | 陈颖, 陈昕, 汪南阳, 等. 低温胁迫下西番莲叶片的生理反应及超微结构变化[J]. 西北植物学报, 2012, 32(3):532-539. |
| Chen Y, Chen X, Wang NY, et al. Physiological response to cold stress and cell ultra-structure changes in Passiflora edulis leaves[J]. Acta Bot Boreali Occidentalia Sin, 2012, 32(3):532-539. | |
| [37] | 郑国华, 张贺英, 钟秀容. 低温胁迫下枇杷叶片细胞超微结构及膜透性和保护酶活性的变化[J]. 中国生态农业学报, 2009, 17(4):739-745. |
|
Zheng GH, Zhang HY, Zhong XR. Changes in cell ultra-structure, membrane permeability and protective enzyme activity in Eriobotrya japonica Lindl. leaves under cold stress[J]. Chin J Eco Agric, 2009, 17(4):739-745.
doi: 10.3724/SP.J.1011.2009.00739 URL |
|
| [38] | 梁李宏, 梅新, 林锋, 等. 低温胁迫对腰果幼苗叶片组织结构和生理指标的影响[J]. 生态环境学报, 2009, 18(1):317-320. |
| Liang LH, Mei X, Lin F, et al. Effect of low temperature stress on tissue structure and physiological index of cashew young leaves[J]. Ecol Environ Sci, 2009, 18(1):317-320. | |
| [39] | 王晨光, 王希, 苍晶, 等. 低温胁迫对水稻幼苗抗冷性的影响[J]. 东北农业大学学报, 2004, 35(2):205-207. |
| Wang CG, Wang X, Cang J, et al. Effect of low-temperature stress on cold-resistance ability of rice seedlings[J]. J Northeast Agric Univ, 2004, 35(2):205-207. | |
| [40] | 付琳, 厉辉, 张文山, 等. 低温胁迫对不同拔节进程冬小麦光合特性的影响[J]. 新农业, 2021(13):69-71. |
| Fu L, Li H, Zhang WS, et al. Effects of low temperature stress on photosynthetic characteristics of winter wheat at different jointing stages[J]. New Agri, 2021(13):69-71. | |
| [41] | 董杰, 张昊, 张芃芃. 集胞藻PCC 6803类铁氧还蛋白Slr1205的功能研究[J]. 生物技术进展, 2021, 11(1):69-78. |
| Dong J, Zhang H, Zhang PP. Functional study on ferredoxin-like protein Slr1205 in Synechocystis sp. PCC 6803[J]. Curr Biotechnol, 2021, 11(1):69-78. | |
| [42] | 吴晓佩. 文心兰离体培养优化及转化铁氧还蛋白基因研究[D]. 福州:福建农林大学, 2017. |
| Wu XP. Optimization of Oncidium in vitro culture system and transformation ananlysis of ferredoxin genes[D]. Fuzhou:Fujian Agriculture and Forestry University, 2017. | |
| [43] |
Marin A, Passarini F, Croce R, et al. Energy transfer pathways in the CP24 and CP26 antenna complexes of higher plant photosystem II:a comparative study[J]. Biophys J, 2010, 99(12):4056-4065.
doi: 10.1016/j.bpj.2010.10.034 URL |
| [44] |
Cazzaniga S, Kim M, Bellamoli F, et al. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii[J]. Plant Cell Environ, 2020, 43(2):496-509.
doi: 10.1111/pce.13680 |
| [1] | JIANG Lu-yuan, FENG Mei-jing, DU Yu-qing, DI Bao, CHEN Duan-fen, QIU De-you, YANG Yan-fang. Semi-lethal Low Temperature and Taxane Content of Taxus Under Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(3): 232-242. |
| [2] | MAO Ke-xin, WANG Hai-rong, AN Miao, LIU Teng-fei, WANG Shi-jin, LI Jian, LI Guo-tian. Identification of GRAS Gene Family and Expression Analysis Under Low Temperature Stress in Actinidia chinensis [J]. Biotechnology Bulletin, 2023, 39(11): 297-307. |
| [3] | YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans [J]. Biotechnology Bulletin, 2023, 39(11): 318-327. |
| [4] | ZHI Tian-tian, ZHOU Zhou, CHEN Ji-peng, HAN Cheng-yun. Cloning, Functional Identification and Expression Analysis of FAH, a Key Gene for Tyrosine Metabolism in Brassica napus L. [J]. Biotechnology Bulletin, 2023, 39(10): 115-127. |
| [5] | LIN Ke-yun, DUAN Yu-jing, WANG Gao-sheng, SUN Nian-li, FANG Yu-jie, WANG You-ping. Cloning and Functional Identification of BnNF-YA1 in Brassica napus L. [J]. Biotechnology Bulletin, 2022, 38(4): 106-116. |
| [6] | CUI Jie-bing, ZHANG Meng, ZHANG Ying-ting, XU Jin. Effects of Low Temperature Stress on Different Clones of Cryptomeria fortunei and Evaluation of Their Cold Resistance [J]. Biotechnology Bulletin, 2022, 38(3): 31-40. |
| [7] | LIU Chuan-he, HE Han, HE Xiu-gu, LAI Qiu-qin, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Unveiling the Mechanisms of Pineapple Responding to Anti-chilling by Gauze Covering in Winter via Transcriptome and Metabolome Profiling [J]. Biotechnology Bulletin, 2022, 38(11): 58-69. |
| [8] | WU Feng-zhang, WANG He-xin. Low Temperature Stress Response Mediated by Protein Ubiquitination in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 225-235. |
| [9] | ZHANG Bao-qing, SHAO Min, HUANG Yu-xin, HUANG Xing, SONG Xiu-peng, CHEN Hu, WANG Sheng, TAN Qin-liang, YANG Li-tao, LI Yang-rui. Cloning and Expression Analysis of Peroxidase Gene(ScAPX1)from Sugarcane [J]. Biotechnology Bulletin, 2019, 35(12): 31-37. |
| [10] | Han Hongbo, Wang Zhongliang, Chen Gang, Tang Baogui, Zhang Jiandong , Huang Jiansheng, Zhou Hui, Shi Gang, Pan Chuanhao. Cloning and Expression Analysis of Full-length cDNA Sequence of a Low Temperature Resistant Candidate Gene △ 6FAD in Trachinotus ovatus [J]. Biotechnology Bulletin, 2015, 31(7): 115-123. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||