Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (4): 29-43.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1484
Previous Articles Next Articles
XUE Xin-yue(), YU Xue-ran, LIU Xiao-gang, MA Jia-xin, TIAN Lei, LI Pei-fu()
Received:
2020-12-03
Online:
2022-04-26
Published:
2022-05-06
Contact:
LI Pei-fu
E-mail:506843023@qq.com;peifuli@163.com
XUE Xin-yue, YU Xue-ran, LIU Xiao-gang, MA Jia-xin, TIAN Lei, LI Pei-fu. Research Progress in Absorption,Transportation and Accumulation Mechanism of Zinc in Rice[J]. Biotechnology Bulletin, 2022, 38(4): 29-43.
酶Enzyme | 所在部位Location | 可能功能Possible function | 分类Classification | 参考文献Reference |
---|---|---|---|---|
碳酸酐酶 | 叶绿体外膜 | 参与光合作用 | 含锌酶 | [ |
蛋白酶 | 茎叶 | 水解蛋白质肽链 | 含锌酶 | [ |
谷氨酸脱氢酶 | 线粒体 | 参与植物碳氮代谢 | 含锌酶 | [ |
醛缩酶 | 细胞质 | 参与光合作用碳代谢 | 含锌酶 | [ |
铜锌超氧化物歧化酶 | 叶绿体 | 提高植物抗逆性 | 含锌酶 | [ |
RNA聚合酶 | 细胞核 | 参与蛋白质合成 | 需锌酶 | [ |
过氧化氢酶 | 叶绿体 | 参与光呼吸、共生性氮固定 | 需锌酶 | [ |
核酮糖-1,5-二磷酸羧化酶 | 叶绿体 | 参与光合作用碳同化、光呼吸 | 需锌酶 | [ |
1,6-二磷酸果糖酶 | 叶绿体 | 光合产物转运 | 需锌酶 | [ |
过氧化物酶 | 过氧化物酶体 | 促进光合作用、呼吸作用 | 需锌酶 | [ |
Table 1 Zinc enzymes and their possible functions
酶Enzyme | 所在部位Location | 可能功能Possible function | 分类Classification | 参考文献Reference |
---|---|---|---|---|
碳酸酐酶 | 叶绿体外膜 | 参与光合作用 | 含锌酶 | [ |
蛋白酶 | 茎叶 | 水解蛋白质肽链 | 含锌酶 | [ |
谷氨酸脱氢酶 | 线粒体 | 参与植物碳氮代谢 | 含锌酶 | [ |
醛缩酶 | 细胞质 | 参与光合作用碳代谢 | 含锌酶 | [ |
铜锌超氧化物歧化酶 | 叶绿体 | 提高植物抗逆性 | 含锌酶 | [ |
RNA聚合酶 | 细胞核 | 参与蛋白质合成 | 需锌酶 | [ |
过氧化氢酶 | 叶绿体 | 参与光呼吸、共生性氮固定 | 需锌酶 | [ |
核酮糖-1,5-二磷酸羧化酶 | 叶绿体 | 参与光合作用碳同化、光呼吸 | 需锌酶 | [ |
1,6-二磷酸果糖酶 | 叶绿体 | 光合产物转运 | 需锌酶 | [ |
过氧化物酶 | 过氧化物酶体 | 促进光合作用、呼吸作用 | 需锌酶 | [ |
染色体 Chromosome | 群体 Group | 标记 Marker | LOD | 贡献率/% Contribution rate/% | 参考文献 Reference |
---|---|---|---|---|---|
Chr1 | Asominori/IR24RILs | XNpb93-C3029C | 6.00 | 21.90 | [ |
Chr1 | 热研/华占F12RILs | - | 7.29 | - | [ |
Chr1 | 龙锦1号/香软米1578F2 | RM446-RM9 | 1.61 | 4.39 | [ |
Chr2 | 红香1号/松98-131F2:3家系 | RM450-RM327 | 7.24 | 35.40 | [ |
Chr2 | Nipponbare/MeridionalisW1627BC2F6 | RM573 | 6.90 | 15.20 | [ |
Chr2 | Nipponbare/MeridionalisW1627BC2F6 | RM6 | 6.30 | 17.60 | [ |
Chr3 | 协青早B/中恢9308RILs | RM6283-RM7370 | 2.72 | 5.60 | [ |
Chr3 | 奉新红米/明恢100F2 | RM186-RM168 | 1.87 | 12.75 | [ |
Chr4 | 香黑糯195/中花紫香糯F2 | RM5414-RM6659 | 1.92 | 4.56 | [ |
Chr4 | 川香29B/LemontRILs | RM3308-RM3471 | 4.57 | 13.82 | [ |
Chr5 | 红香1号/松98-131F2:3家系 | RM206-RM430 | 9.81 | 24.80 | [ |
Chr5 | 郑山97/明慧RILs | R3166-RG360 | 4.27 | 12.34 | [ |
Chr6 | 奉新红米/明恢100F2 | RM435-RM469 | 1.58 | 4.97 | [ |
Chr6 | 珍汕97B/密阳46RILs | RM204-RM225 | 4.18 | 6.50 | [ |
Chr6 | 十田和/丽粳2号BC5F6 | RM4608-RM6119 | 2.22 | 5.00 | [ |
Chr7 | 宁粳35号/杨和白皮稻F2 | RM6018-RM5508 | - | 5.00-8.00 | [ |
Chr8 | 龙锦1号/香软米1578F2 | RM152-RM3572 | 1.83 | 4.00 | [ |
Chr8 | 香黑糯195/中花紫香糯F2 | RM447-RM7356 | 5.88 | 13.80 | [ |
Chr8 | 香黑糯195/中花紫香糯F2 | RM7356-RM1109 | 5.60 | 14.37 | [ |
Chr9 | 宁大62/宁粳40号F2 | RM285-RM219 | - | 11.00 | [ |
Chr9 | 红香1号/松98-131F2:3家系 | RM410-RM566 | 10.85 | 24.07 | [ |
Chr10 | Asominori/IR24RILs | C751B-C148 | 2.20 | 7.60 | [ |
Chr11 | 奉新红米/明恢100F2 | RM212-RM144 | 1.52 | 7.74 | [ |
Chr11 | 郑山97/明慧RILs | C794-RG118 | 5.65 | 18.61 | [ |
Chr12 | 龙锦1号/香软米1578F2 | RM1036-RM1986 | 1.55 | 5.21 | [ |
Chr12 | Madhukar/SwarnaRILs | RM260-RM7102 | 2.90 | 34.00 | [ |
Chr12 | 红香1号/松98-131F2:3家系 | RM1300-RM1227 | 4.50 | 46.80 | [ |
Table 2 A brief list of QTLs related to zinc content in rice grains
染色体 Chromosome | 群体 Group | 标记 Marker | LOD | 贡献率/% Contribution rate/% | 参考文献 Reference |
---|---|---|---|---|---|
Chr1 | Asominori/IR24RILs | XNpb93-C3029C | 6.00 | 21.90 | [ |
Chr1 | 热研/华占F12RILs | - | 7.29 | - | [ |
Chr1 | 龙锦1号/香软米1578F2 | RM446-RM9 | 1.61 | 4.39 | [ |
Chr2 | 红香1号/松98-131F2:3家系 | RM450-RM327 | 7.24 | 35.40 | [ |
Chr2 | Nipponbare/MeridionalisW1627BC2F6 | RM573 | 6.90 | 15.20 | [ |
Chr2 | Nipponbare/MeridionalisW1627BC2F6 | RM6 | 6.30 | 17.60 | [ |
Chr3 | 协青早B/中恢9308RILs | RM6283-RM7370 | 2.72 | 5.60 | [ |
Chr3 | 奉新红米/明恢100F2 | RM186-RM168 | 1.87 | 12.75 | [ |
Chr4 | 香黑糯195/中花紫香糯F2 | RM5414-RM6659 | 1.92 | 4.56 | [ |
Chr4 | 川香29B/LemontRILs | RM3308-RM3471 | 4.57 | 13.82 | [ |
Chr5 | 红香1号/松98-131F2:3家系 | RM206-RM430 | 9.81 | 24.80 | [ |
Chr5 | 郑山97/明慧RILs | R3166-RG360 | 4.27 | 12.34 | [ |
Chr6 | 奉新红米/明恢100F2 | RM435-RM469 | 1.58 | 4.97 | [ |
Chr6 | 珍汕97B/密阳46RILs | RM204-RM225 | 4.18 | 6.50 | [ |
Chr6 | 十田和/丽粳2号BC5F6 | RM4608-RM6119 | 2.22 | 5.00 | [ |
Chr7 | 宁粳35号/杨和白皮稻F2 | RM6018-RM5508 | - | 5.00-8.00 | [ |
Chr8 | 龙锦1号/香软米1578F2 | RM152-RM3572 | 1.83 | 4.00 | [ |
Chr8 | 香黑糯195/中花紫香糯F2 | RM447-RM7356 | 5.88 | 13.80 | [ |
Chr8 | 香黑糯195/中花紫香糯F2 | RM7356-RM1109 | 5.60 | 14.37 | [ |
Chr9 | 宁大62/宁粳40号F2 | RM285-RM219 | - | 11.00 | [ |
Chr9 | 红香1号/松98-131F2:3家系 | RM410-RM566 | 10.85 | 24.07 | [ |
Chr10 | Asominori/IR24RILs | C751B-C148 | 2.20 | 7.60 | [ |
Chr11 | 奉新红米/明恢100F2 | RM212-RM144 | 1.52 | 7.74 | [ |
Chr11 | 郑山97/明慧RILs | C794-RG118 | 5.65 | 18.61 | [ |
Chr12 | 龙锦1号/香软米1578F2 | RM1036-RM1986 | 1.55 | 5.21 | [ |
Chr12 | Madhukar/SwarnaRILs | RM260-RM7102 | 2.90 | 34.00 | [ |
Chr12 | 红香1号/松98-131F2:3家系 | RM1300-RM1227 | 4.50 | 46.80 | [ |
家族 Family | 基因 Gene | 物种 Species | 表达部位 Expression position | 表达诱导条件 Expression induction conditions | 基因转运功能 Gene transfer function | 参考文献 Reference |
---|---|---|---|---|---|---|
ZIP家族 | OsZIP1 | 水稻 | 根、花穗 | 缺Zn | 吸收、转运Zn | [ |
ZIP家族 | OsZIP2 | 水稻 | 根 | 缺Zn | 吸收、分配Zn | [ |
ZIP家族 | OsZIP3 | 水稻 | 根、叶 | 缺Zn | 分配Zn | [ |
ZIP家族 | OsZIP4 | 水稻 | 地上部、根 | 缺Zn | 转运Zn | [ |
ZIP家族 | OsZIP5 | 水稻 | 根 | 缺Zn、Mn | 吸收Zn | [ |
ZIP家族 | OsZIP6 | 水稻 | 地上部、根 | 缺Zn、Mn、Fe | 吸收、分配Zn | [ |
ZIP家族 | OsZIP7 | 水稻 | 地上部、根 | 缺Zn | 吸收Zn | [ |
ZIP家族 | OsZIP8 | 水稻 | 地上部、根 | 缺Fe | 吸收、分配Zn | [ |
ZIP家族 | OsIRT1 | 水稻 | 茎的韧皮部、根 | 缺Fe | 吸收、转运Zn、Fe、Cd | [ |
NRAMP家族 | OsNRAMP2 | 水稻 | 根 | 缺Zn | 吸收、转运Zn | [ |
NRAMP家族 | OsNRAMP3 | 水稻 | 根 | 缺Zn | 吸收、转运Zn | [ |
Table 3 Types, functions and expression characteristics of zinc absorption proteins
家族 Family | 基因 Gene | 物种 Species | 表达部位 Expression position | 表达诱导条件 Expression induction conditions | 基因转运功能 Gene transfer function | 参考文献 Reference |
---|---|---|---|---|---|---|
ZIP家族 | OsZIP1 | 水稻 | 根、花穗 | 缺Zn | 吸收、转运Zn | [ |
ZIP家族 | OsZIP2 | 水稻 | 根 | 缺Zn | 吸收、分配Zn | [ |
ZIP家族 | OsZIP3 | 水稻 | 根、叶 | 缺Zn | 分配Zn | [ |
ZIP家族 | OsZIP4 | 水稻 | 地上部、根 | 缺Zn | 转运Zn | [ |
ZIP家族 | OsZIP5 | 水稻 | 根 | 缺Zn、Mn | 吸收Zn | [ |
ZIP家族 | OsZIP6 | 水稻 | 地上部、根 | 缺Zn、Mn、Fe | 吸收、分配Zn | [ |
ZIP家族 | OsZIP7 | 水稻 | 地上部、根 | 缺Zn | 吸收Zn | [ |
ZIP家族 | OsZIP8 | 水稻 | 地上部、根 | 缺Fe | 吸收、分配Zn | [ |
ZIP家族 | OsIRT1 | 水稻 | 茎的韧皮部、根 | 缺Fe | 吸收、转运Zn、Fe、Cd | [ |
NRAMP家族 | OsNRAMP2 | 水稻 | 根 | 缺Zn | 吸收、转运Zn | [ |
NRAMP家族 | OsNRAMP3 | 水稻 | 根 | 缺Zn | 吸收、转运Zn | [ |
家族 Family | 基因 Gene | 物种 Species | 表达部位 Expression position | 表达诱导条件 Expression induction conditions | 基因转运功能 Gene transfer function | 参考文献 Reference |
---|---|---|---|---|---|---|
CDF家族 | OsMTP1 | 水稻 | 叶 | 缺Zn | Zn、Cd转运 | [ |
CDF家族 | OZT1 | 水稻 | 各组织 | Zn、Cd胁迫下 | Zn、Cd转运 | [ |
P1B型ATPases | OsHMA1 | 水稻 | 地上部 | 缺Zn | Zn转运 | [ |
P1B型ATPases | OsHMA2 | 水稻 | 根 | 缺Zn | Zn、Cd转运 | [ |
P1B型ATPases | OsHMA3 | 水稻 | 叶 | 缺Cd | Zn、Cd转运 | [ |
三磷酸结合盒转运蛋白 | OsPDR9 | 水稻 | 根(幼苗) | Zn、Cd胁迫下 | Zn、Fe转运 | [ |
Table 4 Types, functions and expression characteristics of zinc excretion proteins
家族 Family | 基因 Gene | 物种 Species | 表达部位 Expression position | 表达诱导条件 Expression induction conditions | 基因转运功能 Gene transfer function | 参考文献 Reference |
---|---|---|---|---|---|---|
CDF家族 | OsMTP1 | 水稻 | 叶 | 缺Zn | Zn、Cd转运 | [ |
CDF家族 | OZT1 | 水稻 | 各组织 | Zn、Cd胁迫下 | Zn、Cd转运 | [ |
P1B型ATPases | OsHMA1 | 水稻 | 地上部 | 缺Zn | Zn转运 | [ |
P1B型ATPases | OsHMA2 | 水稻 | 根 | 缺Zn | Zn、Cd转运 | [ |
P1B型ATPases | OsHMA3 | 水稻 | 叶 | 缺Cd | Zn、Cd转运 | [ |
三磷酸结合盒转运蛋白 | OsPDR9 | 水稻 | 根(幼苗) | Zn、Cd胁迫下 | Zn、Fe转运 | [ |
[84] | Zhong X, Li SS. Rice Advances in structure and function of P1B-ATPase heavy metal transporter[J]. Journal of Ningxia Normal University, 2013, 34(6):62-69. |
[85] | 张玉秀, 张媛雅, 孙涛, 等. 植物重金属转运蛋白P1B-ATPase结构和功能研究进展[J]. 生物工程学报, 2010, 26(6):715-725. |
Zhang YX, Zhang YY, Sun T, et al. Plant heavy metal transporter Advances in structure and function of P1B-ATPase[J]. Acta Bioengineering, 2010, 26(6):715-725. | |
[86] | 陈豫, 贾旭. 几个小麦锌转运蛋白基因的克隆与功能分析[C]. 中国农业生物技术学会. 中国农业生物技术学会第三届会员代表大会暨学术交流会论文摘要集., 2006. |
Chen Y, Jia X. Cloning and functional analysis of several zinc transporter genes in wheat[C]. Proceedings of the Third Congress and Academic Exchange Meeting of the Chinese Society of Agricultural Biotechnology. Chinese Society of Agricultural Biotechnology, 2006. | |
[87] | 赵明. 锌肥在水稻上的应用研究[J]. 现代农业研究, 2019(12):58-59. |
Zhao M. Study on the application of zinc fertilizer on rice[J]. Modern Agricultural Research, 2019(12):58-59. | |
[88] | 申建波, 张福锁, 毛达如. 植物矿质营养的生态意义——Ⅱ. 植物对矿质养分的吸收、利用和分配[J]. 生态农业研究, 1997(2):13-16. |
Shen JB, Zhang FS, Mao DR. The ecological significance of plant mineral nutrition——II. Plants’ absorption, utilization and distribution of mineral nutrients[J]. Ecological Agriculture Research, 1997(2):13-16. | |
[89] | 曹英杰, 杨剑飞, 王宇. 全基因组关联分析在作物育种研究中的应用[J]. 核农学报, 2019, 33(8):1508-1518. |
Cao YJ, Yang JF, Wang Y. Application of genome-wide association analysis in crop breeding research[J]. Journal of Nuclear Agriculture, 2019, 33(8):1508-1518. | |
[1] | 胡焰, 韩光宇, 王健. 微量元素锌与人体健康初探[J]. 当代医学, 2011, 17(31):152-153. |
Hu Y, Han GY, Wang J. Preliminary study on trace element zinc and human health[J]. Contemporary Medicine, 2011, 17(31):152-153. | |
[2] | 陈文强. 微量元素锌与人体健康[J]. 微量元素与健康研究, 2006, 23(4):62-65. |
Chen WQ. Trace element zinc and human health[J]. Microelement and Health Research, 2006, 23(4):62-65. | |
[3] | 赵同科. 植物锌营养研究综述与展望[J]. 河北农业大学学报, 1996, 19(1):102-107. |
Zhao TK. Review and prospect of zinc nutrition in plants[J]. Journal of Hebei Agricultural University, 1996, 19(1):102-107. | |
[4] | 王英杰, 明镇寰. 锌在酶中发挥功能的几种方式[J]. 生命的化学, 1994(1):21-24. |
Wang YJ, Ming ZH. Several ways of zinc function in enzymes[J]. Chemistry of Life, 1994(1):21-24. | |
[5] | 陈文荣. 水稻(Oryza sativa L.)锌高效营养生理机制研究[D]. 杭州:浙江大学, 2008. |
Chen WR. Physiological mechanism of zinc efficient nutrition in Rice(Oryza sativa L. )[D]. Hangzhou:Zhejiang University, 2008. | |
[6] | 张凯岳. 锌对水稻碳酸酐酶和光合作用的调节作用研究[D]. 武汉:华中农业大学, 2015. |
Zhang KY. Regulation of zinc on carbonic anhydrase and photosynthesis in rice[D]. Wuhan:Huazhong Agricultural University, 2015. | |
[7] | 万吉丽. 锌在水稻体内运输、分配及积累的生理机制及基因型差异[D]. 杭州:浙江大学, 2010. |
Wan JL. Physiological mechanism and genotype differences of zinc transport, distribution and accumulation in rice[D]. Hangzhou:Zhejiang University, 2010. | |
[8] | 黄国存, 田波. 高等植物中的谷氨酸脱氢酶及其生理作用[J]. 植物学通报, 2001, 18(4):396-401. |
Huang GC, Tian B. Glutamate dehydrogenase and its physiological function in higher plants[J]. Botany Bulletin, 2001, 18(4):396-401. | |
[9] | 王峰, 王宏斌, 王金发. 水稻细胞质铜锌超氧化物歧化酶基因的序列和表达分析[J]. 热带亚热带植物学报, 2007, 15(2):101-106. |
Wang F, Wang HB, Wang JF. Sequence and expression analysis of copper zinc superoxide dismutase gene in rice[J]. Acta Tropica and Subtropics, 2007, 15(2):101-106. | |
[10] | 虞银江, 廖海兵, 陈文荣, 等. 水稻吸收、运输锌及其籽粒富集锌的机制[J]. 中国水稻科学, 2012, 26(3):365-372. |
Yu YJ, Liao HB, Chen WR, et al. Mechanism of zinc uptake and transportation in rice and zinc accumulation in rice grains[J]. Chinese Journal of Rice Science, 2012, 26(3):365-372. | |
[11] | 梅杨, 李海蓝, 谢晋, 等. 核酮糖-1, 5-二磷酸羧化酶/加氧酶(Rubisco)[J]. 植物生理学通讯, 2007(2):363-368. |
Mei Y, Li HL, Xie J, et al. Ribose-1, 5-diphosphate carboxylase/oxygenase(Rubisco)[J]. Plant Physiology Communication, 2007(2):363-368. | |
[90] | 赵又佼, 赵龙, 苏颖. 锌离子、锌转运蛋白——细胞信号通路的新调控因子[J]. 中国细胞生物学学报, 2020, 42(9):1631-1641. |
Zhao YJ, Zhao L, Su Y. Zinc ions and zinc transporters——new regulators of cell signaling pathway[J]. Chinese Journal of Cell Biology, 2020, 42(9):1631-1641. | |
[91] | 侯青青, 司丽珍, 等. 水稻复杂性状研究的新途径:水稻重要农艺性状全基因组关联分析[J]. 生命科学, 2016, 28(10):1250-1257. |
Hou QQ, Si LZ, et al. A new approach to the study of rice complex traits:genome-wide association analysis of important agronomic traits in rice[J]. Life Science, 2016, 28(10):1250-1257. | |
[92] | 徐扬. 关联分析和基因组预测相关方法的探讨与应用[D]. 扬州:扬州大学, 2016. |
Xu Y. Discussion and application of correlation analysis and genome prediction methods[D]. Yangzhou:Yangzhou University, 2016. | |
[12] | 方旭, 夏嫱. 锌对动植物酶活性的影响[J]. 预防医学论坛, 2014, 20(2):127-129. |
Fang X, Xia J. Effects of zinc on enzyme activities in animals and plants[J]. Forum on Preventive Medicine, 2014, 20(2):127-129. | |
[13] |
Sen A, Heinin JL, Holaday S A, et al. Increased resistance to oxidative stress in transgenic plant that overexpressed chloroplastic Cu/Zn superoxide dismutase[J]. Proc Natl Acad Sci USA, 1993, 90:1629-1633.
doi: 10.1073/pnas.90.4.1629 URL |
[14] | 张莉, 任媛媛, 张岁岐. 锌缺乏对植物生长发育的影响[J]. 现代农业研究, 2020, 26(5):54-55. |
Zhang L, Ren YY, Zhang SQ. Effects of zinc deficiency on plant growth and development[J]. Modern Agricultural Research, 2020, 26(5):54-55. | |
[15] | 徐晓燕, 杨肖娥, 杨玉爱. 锌在植物中的形态及生理作用机理研究进展[J]. 广东微量元素科学, 1999, 6(11):1-6. |
Xu XY, Yang XE, Yang YA. Research progress on the morphology and physiological mechanism of zinc in plants[J]. Guangdong Journal of Trace Element Science, 1999, 6(11):1-6. | |
[16] | 李延, 黄毅斌. 缺锌对水稻蛋白质合成的影响[J]. 福建省农科院学报, 1996(1):22-24. |
Li Y, Huang YB. Effects of zinc deficiency on protein synjournal in rice[J]. Journal of Fujian Academy of Agricultural Sciences, 1996(1):22-24. | |
[17] | 张莹. 锌在植物体内的生理功能和吸收转运[J]. 度假旅游, 2018(9):106-107. |
Zhang Y. Physiological function and absorption and transport of zinc in plants[J]. Holiday Tourism, 2018(9):106-107. | |
[18] | 崔澂. 锌和生长素在植物里的分布对生长的关系[J]. Journal of Integrative Plant Biology, 1954(1):31-36. |
Cui C. The relationship between the distribution of zinc and auxin in plants on growth[J]. Journal of Integrated Plant Biology, 1954(1):31-36. | |
[19] | 刘永兵, 韩帮东. 微量元素锌对水稻产量和品质的影响[J]. 现代化农业, 2020(7):16-17. |
Liu YB, Han BD. Effects of trace element zinc on Yield and quality of rice[J]. Modern Agriculture, 2020(7):16-17. | |
[20] | 韩金玲, 李雁鸣, 马春英. 锌对作物生长发育及产量的影响(综述)[J]. 河北科技师范学院学报, 2004, 18(4):72-75. |
Han JL, Li YM, Ma CY. Effects of zinc on crop growth and yield(review)[J]. Journal of Hebei Normal University of Science and Technology, 2004, 18(4):72-75. | |
[21] | 陈候鸣, 陈跃, 王盾, 等. 核酮糖-1, 5-二磷酸羧化酶/加氧酶活化酶在植物抗逆性中的作用[J]. 植物生理学报, 2016, 52(11):1637-1648. |
Chen HM, Chen Y, Wang D, et al. The role of ribulose-1, 5-diphosphate carboxylase/oxygenase activator in plant stress resistance[J]. Acta Phytophysiology, 2016, 52(11):1637-1648. | |
[22] | 张福锁. 锌营养状况对小麦根细胞膜透性的影响[J]. 植物生理与分子生物学学报, 1992(1):24-28. |
Zhang FS. Effect of zinc nutrition on membrane permeability of wheat root cells[J]. Acta Phytologica Sinica, 1992(1):24-28. | |
[23] | 吴春勇, 韦燕燕, 冯英, 等. 水稻锌生物有效性及通过土壤-植物系统强化锌含量的研究进展[J]. 中国农业科技导报, 2009, 11(2):23-29. |
Wu CY, Wei YY, Feng Y, et al. Research progress on bioavailability of zinc in rice and enhancement of zinc content through soil plant system[J]. China Agricultural Science and Technology Guide, 2009, 11(2):23-29. | |
[24] | 汤锡珂. 植物与锌肥[J]. 植物杂志, 1983(1):5-6. |
Tang XK. Plant and zinc fertilizer[J]. Journal of Plants, 1983(1):5-6. | |
[25] | Bettger WJ, O’ Dell BL. A critical physiological role of zinc in the structure and function of biomembranes[J]. Pergamon, 1981, 28(13):1425-1438. |
[26] | 秦遂初, 范浩定, 钱孝樵. 水稻缺锌症的调查研究[J]. 浙江农业科学, 1982(4):197-201. |
Qin SC, Fan HD, Qian XQ. Investigation of zinc deficiency in rice[J]. Zhejiang Agricultural Science, 1982(4):197-201. | |
[27] | 张洪成, 仇家山. 水稻缺锌缩苗病诊断与防治[J]. 农业科技通讯, 1988(8):25. |
Zhang HC, Qiu JS. Diagnosis and control of rice zinc deficiency disease[J]. Agricultural Science and Technology Communication, 1988(8):25. | |
[28] |
Elert E. Rice by the numbers:A good grain[J]. Nature, 2014, 514(7524):S50-S51.
doi: 10.1038/514S50a URL |
[29] |
Felipe KR, Raul AS, Paloma KM, et al. ZINC-INDUCED FACILITATOR-LIKE family in plants:lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice(Oryza sativa)paralogs[J]. BMC Plant Biology, 2011, 11:20.
doi: 10.1186/1471-2229-11-20 URL |
[30] |
Garcia-Oliveira AL, Chander S, Ortiz R, et al. Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals[J]. Frontiers in Plant Science, 2018, 9:937.
doi: 10.3389/fpls.2018.00937 pmid: 30013590 |
[31] | 李成晨, 索海翠, 刘晓津, 李小波. 马铃薯锌生物强化研究进展[J]. 江苏农业科学, 2019, 47(20):69-74. |
Li CC, Suo HC, Liu XJ, et al. Research progress of potato zinc biofortification[J]. Jiangsu Agricultural Sciences, 2019, 47(20):69-74. | |
[32] | 周志波, 易亚科, 陈光辉. 水稻Cd吸收、转运机理研究进展[J]. 作物杂志, 2017(1):14-19. |
Zhou ZB, Yi YK, Chen GH. Advances in Cd uptake and transport in rice[J]. Journal of Crops, 2017(1):14-19. | |
[33] |
Reddy NR, Sathe SK, Salunkhe DK. Phytates in legumes and cereals[J]. Advances in Food Research, 1982, 28:1-92.
pmid: 6299067 |
[34] |
Veum TL, Raboy V. Hulled and hull-less barley grains with the genetic trait for low-phytic acid increased the apparent total-tract digestibility of phosphorus and calcium in diets for young swine[J]. Journal of Animal Science, 2016, 94(3):1000-1011.
doi: 10.2527/jas.2015-9994 pmid: 27065262 |
[35] | 张永刚, Carrie Walk, Casey Bradley, 等. 植酸酶、植酸以及锌之间的相互作用[J]. 中国畜牧杂志, 2015, 51(24):60-62. |
Zhang YG, Walk C, Bradley C, et al. Interaction between phytase, phytic acid and zinc[J]. Chinese Journal of Animal Husbandry, 2015, 51(24):60-62. | |
[36] | 韦燕燕. 水稻籽粒中锌生物有效性与调控机制[D]. 杭州:浙江大学, 2013. |
Wei YY. Bioavailability and regulation mechanism of zinc in rice grains[D]. Hangzhou:Zhejiang University, 2013. | |
[37] | 祁明, 章士炎. 锌与水稻氮素代谢的研究[J]. 土壤肥料, 1982(3):26-28. |
Qi M, Zhang SY. Study on zinc and nitrogen metabolism in rice[J]. Soil Fertilizer, 1982(3):26-28. | |
[38] | 王孟兰. 不同锌肥用量对水稻产量及养分吸收的影响[J]. 现代农业科技, 2020(9):20, 24. |
Wang ML. Effects of different zinc fertilizer rates on rice yield and nutrient uptake[J]. Modern Agricultural Science and Technology, 2020(9):20, 24. | |
[39] | 麦日桂, 冯时钦. 施用锌肥对水稻试验报告[J]. 农业与技术, 2020, 40(7):50-51. |
Mai RG, Feng SQ. Experimental report on application of zinc fertilizer on rice[J]. Agriculture and Technology, 2020, 40(7):50-51. | |
[40] | 聂录, 裴鑫宇. 微量元素锌对水稻产量和品质的影响[J]. 现代化农业, 2019(5):20-21. |
Nie L, Pei XY. Effects of trace element zinc on rice yield and quality[J]. Modern Agriculture, 2019(5):20-21. | |
[41] | 张丽, 耿荣, 任杨. 宁夏引黄灌区水稻锌锰微肥应用效果分析[J]. 北方农业学报, 2019, 47(6):47-52. |
Zhang L, Geng R, Ren Y. Analysis on application effect of zinc and manganese micro fertilizer on rice in Ningxia Yellow River Irrigation Area[J]. Acta Agriculturae Sinica, 2019, 47(6):47-52. | |
[42] | 袁少文. 富锌有机叶面肥对稻米产量及品质的影响[D]. 哈尔滨:东北农业大学, 2012. |
Yuan SW. Effect of zinc rich organic foliar fertilizer on rice yield and quality[D]. Haerbin:Northeast Agricultural University, 2012. | |
[43] | Stomph TJ, Jiang W, Van Der Putten PE, et al. Zinc allocation and re-allocation in rice[J]. Front Plant Sci, 2014, 5:8. |
[44] |
Palmgren MG, Clemens S, Williams LE, et al. Zinc biofortification of cereals:problems and solutions[J]. Trends Plant Sci, 2008, 13:464-473.
doi: 10.1016/j.tplants.2008.06.005 pmid: 18701340 |
[45] | 付力成. 叶面喷施锌肥对水稻锌吸收、分配及积累的影响[D]. 杭州:浙江大学, 2011. |
Fu LC. Effects of foliar spraying zinc fertilizer on zinc absorption, distribution and accumulation in rice[D]. Hangzhou:Zhejiang University, 2011. | |
[46] | 李春俭, 彭云峰, 牛君仿, 等. 土壤中的玉米根系生长及其研究应注意的问题[J]. 植物营养与肥料学报, 2010, 16(1):225-231. |
Li CJ, Peng YF, Niu JF, et al. Root growth of Maize in soil and problems needing attention in research[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(1):225-231. | |
[47] | 王威, 张联合, 李华, 等. 水稻营养吸收和转运的分子机制研究进展[J]. 中国科学:生命科学, 2015, 45(6):569-590. |
Wang W, Zhang LH, Li H, et al. Molecular mechanism of nutrient uptake and transport in rice[J]. Science in China:Life Sciences, 2015, 45(6):569-590. | |
[48] |
Yang X, Ye ZQ, Shi CH, et al. Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains[J]. Journal of Plant Nutrition, 1998, 21(7):1453-1462.
doi: 10.1080/01904169809365495 URL |
[49] | 曾亚文, 申时全, 汪禄祥, 等. 云南稻种矿质元素含量与形态及品质性状的关系[J]. 中国水稻科学, 2005, 19(2):127-131. |
Zeng YW, Shen SQ, Wang Lx, et al. Relationship between mineral element content and morphological and quality traits of rice varieties in Yunnan[J]. Chinese Journal of Rice Science, 2005, 1(2):127-131. | |
[50] | Gregorio GB, Senadhira D, Htut T. Improving iron and zinc value of rice for human nutrition[J]. Agriculture et Développement, 1999, 23:68-81. |
[51] | 张标金, 罗林广, 魏益华, 等. 不同基因型水稻锌积累动态过程的比较[J]. 江西农业学报, 2015, 27(9):6-10. |
Zhang BJ, Luo LG, Wei YH, et al. Comparison of dynamic process of zinc accumulation in different rice genotypes[J]. Jiangxi Agricultural Journal, 2015, 27(9):6-10. | |
[52] | 张济龙. 杂交水稻及其亲本锌吸收特性研究[D]. 成都:四川农业大学, 2008. |
Zhang JL. Study on zinc absorption characteristics of hybrid rice and its parents[D]. Chengdu:Sichuan Agricultural University, 2008. | |
[53] |
Yanjun Dong. Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling(Oryza sativa L. )[J]. Field Crops Research, 2006, 95(2-3):420-425.
doi: 10.1016/j.fcr.2005.03.005 URL |
[54] | 朱鸿宇, 王盛, 张月, 等. 水稻籽粒砷、铜、铁、汞、锌含量QTL挖掘及候选基因分析[J]. 中国科学:生命科学, 2020, 50(6):623-632. |
Zhu HY, Wang S, Zhang Y, et al. QTL mining and candidate gene analysis of arsenic, copper, iron, mercury and zinc content in rice grain[J]. Science in China:Life Sciences, 2020, 50(6):623-632. | |
[55] | 孙明茂. 水稻籽粒铁、硒、锌、铜等矿质元素和花色苷含量的遗传及QTL分析[D]. 泰安:山东农业大学, 2006. |
Sun MM. Genetic and QTL analysis of iron, selenium, zinc, copper and other mineral elements and anthocyanin content in rice[D]. Tai’an:Shandong Agricultural University, 2006. | |
[56] | 黄莹莹, 邹德堂, 等. 水稻子粒锰、铁、锌、铜含量的QTL定位分析[J]. 作物杂志, 2012(6):77-81. |
Huang YY, Zou DT, et al. QTL mapping analysis of Mn, Fe, Zn, Cu contents in rice grains[J]. Journal of Crops, 2012(6):77-81. | |
[57] | Ishikawa R, Iwata M, Taniko K, et al. Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice[J]. PLoS One, 2017, 12(10):127-224. |
[58] | 沈希宏, 曹立勇, 邵国胜, 等. 水稻籽粒中5种微量元素含量的QTL定位[J]. 分子植物育种, 2008, 6(6):1061-1067. |
Shen XH, Cao LY, Shao GS, et al. QTL localization of 5 trace elements in rice seeds[J]. Molecular Plant Breeding, 2008, 6(6):1061-1067 | |
[59] | 张现伟, 杨莉, 等. 水稻籽粒锌含量的QTL定位[J]. 植物学报, 2009, 44(5):594-600. |
Zhang XW, Yang L, et al. Mapping of QTLs for zinc content in rice grains[J]. Acta Phytologica Sinica, 2009, 44(5):594-600. | |
[60] | 崔文刚. 稻米微量元素含量的遗传研究[D]. 武汉:华中农业大学, 2008. |
Cui WG. Genetic study of trace elements in rice[D]. Wuhan:Huazhong Agricultural University, 2008. | |
[61] | 钟林. 稻米矿质元素含量的QTL分析[D]. 成都:四川农业大学, 2010. |
Zhong L. QTL analysis of mineral element content in rice[D]. Chengdu:Sichuan Agricultural University, 2010. | |
[62] |
Lu K, Li L, Zheng X, et al. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains[J]. Journal of Genetics, 2008, 87(3):305-310.
doi: 10.1007/s12041-008-0049-8 URL |
[63] | 刘杰. 稻米中8种矿质元素含量的QTL定位[D]. 北京:中国农业科学院, 2010. |
Liu J. QTL mapping of eight mineral elements in rice[D]. Beijing:Chinese Academy of Agricultural Sciences, 2010. | |
[64] | 孙正海, 曾亚文, 杨树明, 等. 十和田近等基因系糙米锌含量QTL定位[J]. 分子植物育种, 2009, 7(2):264-268. |
Sun ZH, Zeng YW, Yang SM, et al. Mapping of QTL for zinc content in brown rice of ShiHeTian near isogenic line[J]. Molecular Plant Breeding, 2009, 7(2):264-268. | |
[65] | 杨治伟. 宁夏粳稻种质资源锌、铁含量的关联分析及地方品种籽粒锌含量的QTL定位[D]. 银川:宁夏大学, 2019. |
Yang ZW. Association analysis of zinc and iron contents in Japonica Rice Germplasm Resources in Ningxia and QTL mapping of zinc content in grains of local varieties[D]. Yinchuan:Ningxia University, 2019. | |
[66] | 张得雯. 富锌水稻种质资源筛选及籽粒锌含量的遗传分析和QTL定位[D]. 银川:宁夏大学, 2015. |
Zhang DW. Screening of zinc rich rice germplasm resources and genetic analysis and QTL mapping of grain zinc content[D]. Yinchuan:Ningxia University, 2015. | |
[67] |
Anuradha K, Agarwal S, Rao YV, et al. Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar× Swarna RILs[J]. Gene, 2012, 508(2), 233-240.
doi: 10.1016/j.gene.2012.07.054 pmid: 22964359 |
[68] | 刘铮. 我国土壤中锌含量的分布规律[J]. 中国农业科学, 1994, 27(1):30-37. |
Liu Z. Distribution of zinc content in soil of China[J]. Chinese Journal of Agricultural Sciences, 1994, 27(1):30-37. | |
[69] | 王子腾, 耿元波, 梁涛. 中国农田土壤的有效锌含量及影响因素分析[J]. 中国土壤与肥料, 2019(6):55-63. |
Wang ZT, Geng YB, Liang T. Analysis of available zinc content and its influencing factors in Chinese farmland soil[J]. Chinese Soil and Fertilizer, 2019(6):55-63. | |
[70] | 任军, 袁震林, 张淑芬. 土壤供锌能力与锌肥效应的研究Ⅱ. 吉林省主要土壤水稻缺锌临界值的研究[J]. 吉林农业科学, 1992(2):51-53. |
Ren J, Yuan ZL, Zhang SF. Study on the zinc supply capacity of soil and the effect of zinc fertilizer II. Study on the critical value of zinc deficiency of rice in main soil of Jilin province[J]. Jilin Agricultural Science, 1992(2):51-53. | |
[71] | 王晨, 刘朝, 马婧, 等. 叶面喷施氨基酸锌复合物对水稻产量性状和锌吸收的影响[J]. 中国土壤与肥料, 2017(4):118-123. |
Wang C, Liu C, Ma J, et al. Effects of foliar spraying of amino acid zinc complex on Yield Traits and zinc uptake of rice[J]. Soil and Fertilizer, China, 2017(4):118-123. | |
[72] | 郭九信, 廖文强, 孙玉明, 等. 锌肥施用方法对水稻产量及籽粒氮锌含量的影响[J]. 中国水稻科学, 2014(2):185-192. |
Guo JX, Liao WQ, Sun YM, et al. Effects of zinc fertilizer application methods on rice yield and grain nitrogen and zinc content[J]. Chinese Journal of Rice Science, 2014(2):185-192. | |
[73] | 李生秀. 植物营养与肥料学科的现状与展望[J]. 植物营养与肥料学报, 1999, 5(3):193-205. |
Li SX. Present situation and Prospect of plant nutrition and fertilizer science[J]. Journal of Plant Nutrition and Fertilizer, 1999, 5(3):193-205. | |
[74] | Ming LC, Xiao YS, Dao FL, et al. Identification and characterization of MtMTP1, a Zn transporter of CDF family, in the Medicago truncatula[J]. Plant Physiology and Biochemistry, 2009, 47(11). |
[75] | Xiao PG, Chun QZ, Fu SZ, et al. Tolerance to Zinc Deficiency in Rice Correlates with Zinc Uptake and Translocation[J]. Plant and Soil, 2005, 278(1-2). |
[76] | 汪洪, 金继运. 植物对锌吸收运输及积累的生理与分子机制[J]. 植物营养与肥料学报, 2009, 15(1):225-235. |
Wang H, Jin JY. Physiological and molecular mechanisms of zinc uptake, transportation and accumulation in plants[J]. Journal of Plant Nutrition and Fertilizer, 2009, 15(1):225-235. | |
[77] | 金枫, 王翠, 林海建, 等. 植物重金属转运蛋白研究进展[J]. 应用生态学报, 2010, 21(7):1875-1882. |
Jin F, Wang C, Lin HJ, et al. Research progress of plant heavy metal transporters[J]. Acta Applied Ecology, 2010, 21(7):1875-1882. | |
[78] |
刘元峰, 李素贞, 郭晋杰, 等. 植物YSL家族基因研究进展[J]. 生物技术通报, 2017, 33(9):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0375 |
Liu YF, Li SZ, Guo JJ, et al. Research progress of plant YSL family genes[J]. Biotechnology Bulletin, 2017, 33(9):1-9. | |
[79] | 李素贞, 陈景堂. 植物锌铁转运相关蛋白家族的研究进展[J]. 生物技术通报, 2013(2):8-14. |
Li SZ, Chen JT. Research progress of plant zinc iron transport related protein family[J]. Biotechnology Bulletin, 2013(2):8-14. | |
[80] | 武泰存, 房蓓, 王景安. 锌转运蛋白基因研究进展[J]. 西北植物学报, 2005, 25(10):2139-2144. |
Wu TC, Fang B, Wang JA. research progress of zinc transporter gene[J]. Acta Botany Sinica, 2005, 25(10):2139-2144. | |
[81] |
Xue SL, Sheng JJF, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019, 19(1):283.
doi: 10.1186/s12870-019-1899-3 URL |
[82] | 孙丽娟, 程龙军. 缺Cu2+和Zn2+对水稻OsNRAMP家族基因表达与主要金属离子吸收的影响[J]. 植物生理学通讯, 2011, 47(9):879-884. |
Sun LJ, Cheng LJ. Effects of Cu2+ and Zn2+ deficiency on osnramp family gene expression and main metal ion uptake in rice[J]. Acta Phytophysiology, 2011, 47(9):879-884. | |
[83] | 张丽婷, 王志强, 马兴立, 等. 植物中锌转运蛋白的研究进展[J]. 贵州农业科学, 2014, 42(8):55-60. |
Zhang LT, Wang ZQ, Ma XL, et al. Research progress of zinc transporters in plants[J]. Guizhou Agricultural Sciences, 2014, 42(8):55-60. | |
[84] | 钟茜, 李韶山. 水稻P1B型ATPase重金属转运蛋白的结构与功能研究进展[J]. 宁夏师范学院学报, 2013, 34(6):62-69. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[5] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[6] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[7] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[8] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[9] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[10] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[11] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[12] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[13] | HUANG Jing, ZHU Liang, XUE Peng-bo, FU Qiang. Research on Mechanism and QTL Mapping Associated with Cadmium Accumulation in Rice Leaves and Grains [J]. Biotechnology Bulletin, 2022, 38(8): 118-126. |
[14] | ZHAO Jing-ya, PENG Meng-ya, ZHANG Shi-yu, SHAN Yi-xuan, XING Xiao-ping, SHI Yan, LI Hai-yang, YANG Xue, LI Hong-lian, CHEN Lin-lin. Role of C2H2 Zinc Finger Transcription Factor FpCzf7 in the Growth and Pathogenicity of Fusarium pseudograminearum [J]. Biotechnology Bulletin, 2022, 38(8): 216-224. |
[15] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||