Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (4): 44-57.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0065
Previous Articles Next Articles
LEI Chun-xia1(), LI Can-hui2, CHEN Yong-kun1,3, GONG Ming1()
Received:
2021-01-16
Online:
2022-04-26
Published:
2022-05-06
Contact:
GONG Ming
E-mail:lcxswx@163.com;gongming6307@163.com
LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization[J]. Biotechnology Bulletin, 2022, 38(4): 44-57.
Fig. 1 Illustration of S. tuberosum tuberization in vitro A:Stolon formation and growth. B:Bending of the stolon apex and swelling of the subapical part. C:The growing tuber. D:Tuberization. Potato aseptic plantlets cultured in vitro were used as experimental material,single stem segments of the pre-cultured aseptic plantlets were put in a culture flask(1/2 MS + 5.5% sucrose + 0.7% agar medium),and cultured in the total darkness(TD)in a plant growth chamber at 20℃ for 15 d. The top part of about 1cm was photographed,which included 4 typical morphological changing stages of tuberization
[1] |
Hannapel DJ, Sharma P, Lin T, et al. The multiple signals that control Tuber formation[J]. Plant Physiol, 2017, 174(2):845-856.
doi: 10.1104/pp.17.00272 pmid: 28520554 |
[2] | 李灿辉, 杨文丽, 王军. 论马铃薯的文化意义和社会影响[J]. 云南师范大学学报:哲学社会科学版, 2002, 34(2):122-128. |
Li CH, Yang WL, Wang J. Talk about the cultural significance and social influence of potato[J]. J Yunnan Norm Univ:Philos Soc Sci Ed, 2002, 34(2):122-128. | |
[3] |
Zaheer K, Akhtar MH. Potato production, usage, and nutrition——A review[J]. Crit Rev Food Sci Nutr, 2016, 56(5):711-721.
doi: 10.1080/10408398.2012.724479 URL |
[4] | 卢肖平. 马铃薯主粮化战略的意义、瓶颈与政策建议[J]. 华中农业大学学报:社会科学版, 2015(3):1-7. |
Lu XP. Strategy of potato as staple food:significance, bottlenecks and policy suggestions[J]. J Huazhong Agric Univ:Soc Sci Ed, 2015(3):1-7. | |
[5] |
Dutt S, Manjul AS, Raigond P, et al. Key players associated with tuberization in potato:potential candidates for genetic engineering[J]. Crit Rev Biotechnol, 2017, 37(7):942-957.
doi: 10.1080/07388551.2016.1274876 pmid: 28095718 |
[6] |
叶明旺, 李灿辉, 龚明. 基因组编辑技术在马铃薯精准分子育种中的应用及研究展望[J]. 生物技术通报, 2020, 36(3):9-17.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1272 |
Ye MW, Li CH, Gong M. Applications and prospect of genome editing techniques in precise potato molecular breeding[J]. Biotechnol Bull, 2020, 36(3):9-17. | |
[7] |
Halterman D, Guenthner J, Collinge S, et al. Biotech potatoes in the 21st century:20 years since the first biotech potato[J]. Am J Potato Res, 2016, 93(1):1-20.
doi: 10.1007/s12230-015-9485-1 URL |
[8] | 苏亚拉其其格, 樊明寿, 贾立国, 等. 氮素形态对马铃薯块茎形成的影响及机理[J]. 土壤通报, 2015, 46(2):509-512. |
Suyala Qi-qige, Fan MS, Fan MS, Jia LG, et al. Influence of nitrogen form on potato tuberization and its possible mechanism[J]. Chin J Soil Sci, 2015, 46(2):509-512. | |
[9] | 苏亚拉其其格, 敖云格日勒, 贾立国, 等. 氮素形态及其浓度供应影响马铃薯块茎形成的生理机制研究[J]. 土壤通报, 2020, 51(6):1430-1436. |
Suyala Qi-qige, Fan MS, Jia LG, et al. Effects of different nitrogen forms and concentrations supply on physiological mechanism of potato tuberization[J]. Chin J Soil Sci, 2020, 51(6):1430-1436. | |
[10] |
Zheng HL, Wang YN, Zhao JY, et al. Tuber formation as influenced by the C:N ratio in potato plants[J]. J Plant Nutr Soil Sci, 2018, 181(5):686-693.
doi: 10.1002/jpln.201700571 URL |
[11] |
Kolomiets MV, Hannapel DJ, Chen H, et al. Lipoxygenase is involved in the control of potato Tuber development[J]. Plant Cell, 2001, 13(3):613-626.
pmid: 11251100 |
[12] | 柳俊, 谢从华. 马铃薯块茎发育机理及其基因表达[J]. 植物学通报, 2001, 18(5):531-539. |
Liu J, Xie CH. The mechanism of potato(Solanum tuberosum L.)Tuber development and related gene expression[J]. Chin Bull Bot, 2001, 18(5):531-539. | |
[13] |
Sarkar D. The signal transduction pathways controlling in planta tuberization in potato:an emerging synjournal[J]. Plant Cell Rep, 2008, 27(1):1-8.
doi: 10.1007/s00299-007-0457-x URL |
[14] | 冷冰, 袁继平, 胡成来, 等. 马铃薯块茎形成的研究进展[J]. 广东农业科学, 2010, 37(6):27-29, 32. |
Leng B, Yuan JP, Hu CL, et al. Research progress on potato tuber formation[J]. Guangdong Agric Sci, 2010, 37(6):27-29, 32. | |
[15] | 李灿辉, 龙维彪. 马铃薯块茎形成机理研究[J]. 中国马铃薯, 1997, 11(3):182-185. |
Li CH, Long WB. Study on the mechanism of potato tuber formation[J]. Chin Potato J, 1997, 11(3):182-185. | |
[16] |
Ševčíková H, Mašková P, Tarkowská D, et al. Carbohydrates and gibberellins relationship in potato tuberization[J]. J Plant Physiol, 2017, 214:53-63.
doi: 10.1016/j.jplph.2017.04.003 URL |
[17] |
何依雪, 刘文, 沈祥陵. GA与B9对马铃薯种薯生长发育的影响[J]. 生物技术通报, 2018, 34(7):66-73.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0023 |
He YX, Liu W, Shen XL. Effects of GA and B9 on the growth and development of potato tubers[J]. Biotechnol Bull, 2018, 34(7):66-73. | |
[18] |
Malkawi A, Jensen BL, Langille AR. Plant hormones isolated from “Katahdin” potato plant tissues and the influence of photoperiod and temperature on their levels in relation to Tuber induction[J]. J Plant Growth Regul, 2007, 26(4):308-317.
doi: 10.1007/s00344-007-9010-y URL |
[19] |
Lomin SN, Myakushina YA, Kolachevskaya OO, et al. Global view on the cytokinin regulatory system in potato[J]. Frontiers in Plant Science, 2020, 11:1-8.
doi: 10.3389/fpls.2020.00001 URL |
[20] |
Romanov GA, Aksenova NP, Konstantinova TN, et al. Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro[J]. Plant Growth Regul, 2000, 32(2/3):245-251.
doi: 10.1023/A:1010771510526 URL |
[21] |
Navarro C, Cruz-Oró E, Prat S. Conserved function of FLOWERING LOCUS T(FT)homologues as signals for storage organ differentiation[J]. Curr Opin Plant Biol, 2015, 23:45-53.
doi: 10.1016/j.pbi.2014.10.008 URL |
[22] |
Roumeliotis E, Kloosterman B, Oortwijn M, et al. The effects of auxin and strigolactones on Tuber initiation and stolon architecture in potato[J]. J Exp Bot, 2012, 63(12):4539-4547.
doi: 10.1093/jxb/ers132 pmid: 22689826 |
[23] |
Marschner H, Sattelmacher B, Bangerth F. Growth rate of potato tubers and endogenous contents of indolylacetic acid and abscisic acid[J]. Physiol Plant, 1984, 60(1):16-20.
doi: 10.1111/j.1399-3054.1984.tb04242.x URL |
[24] |
Macháčková I, Konstantinova TN, Sergeeva LI, et al. Photoperiodic control of growth, development and phytohormone balance in Solanum tuberosum[J]. Physiol Plant, 1998, 102(2):272-278.
doi: 10.1034/j.1399-3054.1998.1020215.x URL |
[25] |
Vreugdenhil D, Dijk W. Effects of ethylene on the tuberization of potato(Solanum tuberosum)cuttings[J]. Plant Growth Regul, 1989, 8(1):31-39.
doi: 10.1007/BF00040914 URL |
[26] |
Cenzano A, Vigliocco A, Kraus T, et al. Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons[J]. Ann Bot, 2003, 91(7):915-919.
doi: 10.1093/aob/mcg098 URL |
[27] |
Sarkar D, Pandey SK, Sharma S. Cytokinins antagonize the jasmonates action on the regulation of potato(Solanum tuberosum)Tuber formation in vitro[J]. Plant Cell Tissue Organ Cult, 2006, 87(3):285-295.
doi: 10.1007/s11240-006-9166-3 URL |
[28] | Hawker JS, Marschner H, Krauss A. Starch synjournal in developing potato tubers[J]. Physiol Plant, 1979, 46(1):25-30. |
[29] |
Müller-Röber B, Sonnewald U, Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences Tuber formation and expression of Tuber storage protein genes[J]. EMBO J, 1992, 11(4):1229-1238.
pmid: 1373373 |
[30] |
Fu Y, Ballicora MA, Preiss J. Mutagenesis of the glucose-1-phosphate-binding site of potato Tuber ADP-glucose pyrophosphorylase[J]. Plant Physiol, 1998, 117(3):989-996.
pmid: 9662541 |
[31] |
Strunik PC, Vreugdenhil D, Eck HJ, et al. Physiological and genetic control of Tuber formation[J]. Potato Res, 1999, 42(2):313-331.
doi: 10.1007/BF02357860 URL |
[32] |
Andersson M, Turesson H, Arrivault S, et al. Inhibition of plastid PPase and NTT leads to major changes in starch and Tuber formation in potato[J]. J Exp Bot, 2018, 69(8):1913-1924.
doi: 10.1093/jxb/ery051 pmid: 29538769 |
[33] | 李灿辉, 王军, 龙维彪. 马铃薯块茎特异蛋白Patatin研究进展[J]. 中国马铃薯, 1998, 12(3):179-186. |
Li CH, Wang J, Long WB. Domestic and Abroad Research Progress of Potato Tuber-Specific Storage Protein Patatin[J]. Chin Potato, 1998, 12(3):179-186. | |
[34] |
Timlin D, Lutfor Rahman SM, Baker J, et al. Whole plant photosynjournal, development, and carbon partitioning in potato as a function of temperature[J]. Agron J, 2006, 98(5):1195-1203.
doi: 10.2134/agronj2005.0260 URL |
[35] | 连勇, 邹颖, 杨宏福, 等. 马铃薯试管薯发育机理的研究──温度对试管薯形成的影响[J]. 马铃薯杂志, 1996, 10(3):130-132. |
Lian Y, Zou Y, Yang HF, et al. Developmental Mechanism of Potato Microtubers in Vitro in Solanum Tuberosum-Effect of temperature on the formation and growth of microtubers[J]. Chin Potato J, 1996, 10(3):130-132. | |
[36] | Ewing EE, Struik PC. Tuber formation in potato:induction, initiation, and growth[M]//Horticultural Reviews. Oxford, UK:John Wiley & Sons, Inc., 2010: 89-198. |
[37] | Jackson SD. Multiple signaling pathways control Tuber induction in potato[J]. Plant Physiol, 1999, 119(1):1-8. |
[38] |
Abelenda JA, Navarro C, Prat S. Flowering and tuberization:a tale of two nightshades[J]. Trends Plant Sci, 2014, 19(2):115-122.
doi: 10.1016/j.tplants.2013.09.010 pmid: 24139978 |
[39] |
Abelenda JA, Cruz-Oró E, Franco-Zorrilla JM, et al. Potato StCONSTANS-like1 suppresses storage organ formation by directly activating the FT-like StSP5G repressor[J]. Curr Biol, 2016, 26(7):872-881.
doi: 10.1016/j.cub.2016.01.066 pmid: 26972319 |
[40] | 韦冬萍, 韦剑锋, 吴炫柯, 等. 马铃薯水分需求特性研究进展[J]. 贵州农业科学, 2012, 40(4):66-70. |
Wei DP, Wei JF, Wu XK, et al. Research progress on water requirements of potato[J]. Guizhou Agric Sci, 2012, 40(4):66-70. | |
[41] |
Qiqige S, Jia LG, Qin YL, et al. Effects of different nitrogen forms on potato growth and development[J]. J Plant Nutr, 2017, 40(11):1651-1659.
doi: 10.1080/01904167.2016.1269345 URL |
[42] | 王涛, 何进智, 何文寿, 等. 不同施肥处理对马铃薯产量和营养品质的影响[J]. 西南农业学报, 2016, 29(10):2416-2421. |
Wang T, He JZ, He WS, et al. Effects of different fertilization treatments on yield and nutrientional quality of potato[J]. Southwest China J Agric Sci, 2016, 29(10):2416-2421. | |
[43] | 王小英, 陈占飞, 方玉川, 等. 不同氮磷钾配比对马铃薯农艺性状、产量和品质的影响[J]. 中国农学通报, 2020, 36(4):44-49. |
Wang XY, Chen ZF, Fang YC, et al. Influence of NPK combinations on agronomic characters, yield and nutrition quality of potato[J]. Chin Agric Sci Bull, 2020, 36(4):44-49. | |
[44] |
Ozgen S, Palta JP. Supplemental calcium application influences potato Tuber number and size[J]. HortScience, 2005, 40(1):102-105.
doi: 10.21273/HORTSCI.40.1.102 URL |
[45] | 谢婷婷, 柳俊. 光周期诱导马铃薯块茎形成的分子机理研究进展[J]. 中国农业科学, 2013, 46(22):4657-4664. |
Xie TT, Liu J. Molecular mechanism underlying photoperiodic-induced potato Tuber formation[J]. Sci Agric Sin, 2013, 46(22):4657-4664. | |
[46] |
Zhou T, Song B, Liu T, et al. Phytochrome F plays critical roles in potato photoperiodic tuberization[J]. Plant J, 2019, 98(1):42-54.
doi: 10.1111/tpj.14198 URL |
[47] |
Kloosterman B, Abelenda JA, Gomez Mdel M, et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes[J]. Nature, 2013, 495(7440):246-250.
doi: 10.1038/nature11912 URL |
[48] |
Navarro C, Abelenda JA, Cruz-Oró E, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T[J]. Nature, 2011, 478(7367):119-122.
doi: 10.1038/nature10431 URL |
[49] |
González-Schain ND, Díaz-Mendoza M, Zurczak M, et al. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner[J]. Plant J, 2012, 70(4):678-690.
doi: 10.1111/j.1365-313X.2012.04909.x URL |
[50] |
Sawa M, Nusinow DA, Kay SA, et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis[J]. Science, 2007, 318(5848):261-265.
doi: 10.1126/science.1146994 URL |
[51] |
Suetsugu N, Wada M. Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles:phototropin, ZTL/FKF1/LKP2 and aureochrome[J]. Plant Cell Physiol, 2013, 54(1):8-23.
doi: 10.1093/pcp/pcs165 URL |
[52] | 巩慧玲, 孙梦遥, 冯再平, 等. 蔗糖调节马铃薯块茎形成机制的研究进展[J]. 中国蔬菜, 2016(3):13-18. |
Gong HL, Sun MY, Feng ZP, et al. A review of studies on mechanism of regulating potato tuberization by sucrose[J]. China Veg, 2016(3):13-18. | |
[53] | Guo JL, Yu CL, Fan CY, et al. Cloning and characterization of a potato TFL1 gene involved in tuberization regulation[J]. Plant Cell Tissue Organ Cult PCTOC, 2010, 103(1):103-109. |
[54] |
Chen H, Banerjee AK, Hannapel DJ. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1[J]. Plant J, 2004, 38(2):276-284.
pmid: 15078330 |
[55] |
Banerjee AK, Chatterjee M, Yu YY, et al. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway[J]. Plant Cell, 2007, 18(12):3443-3457.
doi: 10.1105/tpc.106.042473 URL |
[56] |
Sharma P, Lin T, Hannapel DJ. Targets of the StBEL5 transcription factor include the FT ortholog StSP6A[J]. Plant Physiol, 2016, 170(1):310-324.
doi: 10.1104/pp.15.01314 pmid: 26553650 |
[57] | Hannapel DJ, Banerjee AK. Multiple mobile mRNA signals regulate Tuber development in potato[J]. Plants(Basel), 2017, 6(1):E8. |
[58] |
Martin A, Adam H, Díaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136(17):2873-2881.
doi: 10.1242/dev.031658 URL |
[59] |
Bhogale S, Mahajan AS, Natarajan B, et al. MicroRNA156:a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. Andigena[J]. Plant Physiol, 2014, 164(2):1011-1027.
doi: 10.1104/pp.113.230714 pmid: 24351688 |
[60] |
Menzel CM. Tuberization in potato at high temperatures:gibberellin content and transport from buds[J]. Ann Bot, 1983, 52(5):697-702.
doi: 10.1093/oxfordjournals.aob.a086627 URL |
[61] |
Geigenberger P, Geiger M, Stitt M. High-temperature perturbation of starch synjournal is attributable to inhibition of ADP-glucose pyrophosphorylase by decreased levels of glycerate-3-phosphate in growing potato tubers[J]. Plant Physiol, 1998, 117(4):1307-1316.
pmid: 9701586 |
[62] |
Lehretz GG, Sonnewald S, Hornyik C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato[J]. Curr Biol, 2019, 29(10):1614-1624.e3.
doi: S0960-9822(19)30425-7 pmid: 31056391 |
[63] |
Hancock RD, Morris WL, Ducreux LJ, et al. Physiological, biochemical and molecular responses of the potato(Solanum tuberosum L.)plant to moderately elevated temperature[J]. Plant Cell Environ, 2014, 37(2):439-450.
doi: 10.1111/pce.12168 URL |
[64] |
Rodríguez-Falcón M, Bou J, Prat S. Seasonal control of tuberization in potato:conserved elements with the flowering response[J]. Annu Rev Plant Biol, 2006, 57:151-180.
pmid: 16669759 |
[65] |
Aksenova NP, Konstantinova TN, Golyanovskaya SA, et al. Hormonal regulation of Tuber formation in potato plants[J]. Russ J Plant Physiol, 2012, 59(4):451-466.
doi: 10.1134/S1021443712040024 URL |
[66] |
Carrera E, Bou J, García-Martínez JL, et al. Changes in GA 20-oxidase gene expression strongly affect stem length, Tuber induction and Tuber yield of potato plants[J]. Plant J, 2000, 22(3):247-256.
pmid: 10849342 |
[67] |
Martínez-García JF, García-Martínez JL, Bou J, et al. The interaction of gibberellins and photoperiod in the control of potato tuberization[J]. J Plant Growth Regul, 2001, 20(4):377-386.
doi: 10.1007/s003440010036 URL |
[68] |
Kanno Y, Oikawa T, Chiba Y, et al. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nat Commun, 2016, 7:13245.
doi: 10.1038/ncomms13245 pmid: 27782132 |
[69] |
Nam KH, Minami C, Kong FJ, et al. Relation between environmental factors and the LOX activities upon potato Tuber formation and flower-bud formation in morning glory[J]. Plant Growth Regul, 2005, 46(3):253-260.
doi: 10.1007/s10725-005-0056-1 URL |
[70] |
Raíces M, Ulloa RM, MacIntosh GC, et al. StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration[J]. J Exp Bot, 2003, 54(392):2589-2591.
doi: 10.1093/jxb/erg282 URL |
[71] | 房经贵, 朱旭东, 贾海锋, 等. 植物蔗糖合酶生理功能研究进展[J]. 南京农业大学学报, 2017, 40(5):759-768. |
Fang JG, Zhu XD, Jia HF, et al. Research advance on physiological function of plant sucrose synthase[J]. J Nanjing Agric Univ Soc Ed, 2017, 40(5):759-768. | |
[72] |
Xu X, van Lammeren AAM, Vermeer E, et al. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato Tuber formation in vitro[J]. Plant Physiol, 1998, 117(2):575-584.
pmid: 9625710 |
[73] |
Barker L, Kühn C, Weise A, et al. SUT2, a putative sucrose sensor in sieve elements[J]. Plant Cell, 2000, 12(7):1153-1164.
pmid: 10899981 |
[74] |
Chincinska I, Gier K, Krügel U, et al. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production[J]. Front Plant Sci, 2013, 4:26.
doi: 10.3389/fpls.2013.00026 pmid: 23429841 |
[75] |
Abelenda JA, Bergonzi S, Oortwijn M, et al. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato[J]. Curr Biol, 2019, 29(7):1178-1186.e6.
doi: S0960-9822(19)30157-5 pmid: 30905604 |
[76] |
Kolachevskaya OO, Sergeeva LI, Floková K, et al. Auxin synjournal gene tms1 driven by Tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones[J]. Plant Cell Rep, 2017, 36(3):419-435.
doi: 10.1007/s00299-016-2091-y pmid: 27999977 |
[77] | Nookaraju A, Pandey SK, Upadhyaya CP, et al. Role of Ca2+- mediated signaling in potato tuberization:an overview[J]. Bot Stud, 2012, 53(2):177-189. |
[78] |
Wu F, Chi Y, Jiang Z, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J]. Nature, 2020, 578(7796):577-581.
doi: 10.1038/s41586-020-2032-3 URL |
[79] |
Lin T, Sharma P, Gonzalez DH, et al. The impact of the long-distance transport of a BEL1-like messenger RNA on development[J]. Plant Physiol, 2013, 161(2):760-772.
doi: 10.1104/pp.112.209429 URL |
[80] | Teo CJ, Takahashi K, Shimizu K, et al. Potato Tuber induction is regulated by interactions between components of a tuberigen complex[J]. Plant Cell Physiol, 2017, 58(2):365-374. |
[81] |
Potato Genome Sequencing Consortium, Xu X, Pan S, et al. Genome sequence and analysis of the Tuber crop potato[J]. Nature, 2011, 475(7355):189-195.
doi: 10.1038/nature10158 URL |
[82] |
Barrell PJ, Meiyalaghan S, Jacobs JM, et al. Applications of biotechnology and genomics in potato improvement[J]. Plant Biotechnol J, 2013, 11(8):907-920.
doi: 10.1111/pbi.12099 URL |
[1] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[2] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[3] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[4] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[5] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[6] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[7] | TAO Na, LI Mao-xing, GUO Hua-chun. Optimization of Sweet Potato Genetic Transformation System Mediated by Agrobacterium rhizogenes [J]. Biotechnology Bulletin, 2023, 39(10): 175-183. |
[8] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[9] | LIU Zi-ran, ZHEN Zhen, CHEN Qiang, LI Yue-ying, WANG Ze, PANG Hong-bo. Research Progress in Plant Response to Cd Stress [J]. Biotechnology Bulletin, 2022, 38(6): 13-26. |
[10] | GAO Meng, LI Fu-ting, WEI Zhan-lin, ZHANG Sai-hang, BAI Ru-qian, SHANG Yi, MA Ling. Component Analysis of SCFSLF Complex in Diploid Potato [J]. Biotechnology Bulletin, 2022, 38(4): 117-125. |
[11] | LI Wen-jiao, ZHANG Zhong-feng, LIU Qing, SUN Jie, YANG Li, WANG Xing-jun, ZHAO Shu-zhen. Role of BRs in Plant Response to Abiotic Stress [J]. Biotechnology Bulletin, 2022, 38(1): 228-235. |
[12] | DUAN Xu-guo, ZHANG Yu-hua, HUANG Ting-ting, DING Qian, LUAN Shu-yue, ZHU Qiu-yu. Synergetic Enhancing the Soluble Expression of Thermotoga maritima α-Glucan Phosphorylase by Chemical Chaperones and Induction Condition Optimization [J]. Biotechnology Bulletin, 2021, 37(8): 233-242. |
[13] | LI Qian, JIANG Wen-bo, WANG Yu-xiang, ZHANG Bo, PANG Yong-zhen. Research Progresses on the Drought Resistance of Medicago at Molecular Level [J]. Biotechnology Bulletin, 2021, 37(8): 243-252. |
[14] | WANG Jian-yong, ZOU Yong-mei, GE Yan-bin, WANG Kai, XI Meng-li. Advance on Epigenetic Modification During Plant Callus Induction [J]. Biotechnology Bulletin, 2021, 37(8): 253-262. |
[15] | LIU Hai-guang, LUO Zhen, DONG He-zhong. Research Progress on the Regulation of NO3- Uptake and Transport in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 192-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||