Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (5): 248-256.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0862
Previous Articles Next Articles
WANG Jia-li(), HE Si-qi, KANG Zi-xi, WANG Jian-xun()
Received:
2021-07-04
Online:
2022-05-26
Published:
2022-06-10
Contact:
WANG Jian-xun
E-mail:wangjl120@163.com;jianxun.wang@bucm.edu.cn
WANG Jia-li, HE Si-qi, KANG Zi-xi, WANG Jian-xun. Antibody Phage Display Technology and Its Application in the Discovery of Anti-SARS-CoV-2 Antibodies[J]. Biotechnology Bulletin, 2022, 38(5): 248-256.
抗体名称 Antibody description | 噬菌体抗体库 Phage antibody library | 靶抗原 Target antigen | 抗体类型 Antibody format | 中和活性 Neutralization activity | 参考文献 Reference |
---|---|---|---|---|---|
H014 | 免疫Fab文库 | RBD | 人源化Fab | 假病毒 3 nmol/L 活病毒 38 nmol/L | [ |
IgG1 ab1 | 天然Fab、scFv、VH文库 | RBD | IgG1 | 活病毒200 ng/mL | [ |
HB27 | 免疫Fab文库 | RBD | IgG1 | 活病毒0.22 nmol/L | [ |
II62 | 天然半合成scFv文库 | RBD | scFv、scFv- Fc、IgG1 | — | [ |
VHH-72 | 免疫VHH文库 | S | VHH-Fc | 假病毒 0.2 μg/mL | [ |
H11-D4、H11-H4 | 天然VHH文库 | RBD | VHH-Fc | 活病毒18 nmol/L(H11-D4)、4-6 nmol/L(H11-H4) | [ |
Ty1 | 免疫VHH文库 | RBD | VHH、VHH-Fc | 假病毒0.77 µg/mL(Ty1) 12 ng/mL(Ty1-Fc) | [ |
Nb11-59 | 免疫VHH文库 | RBD | VHH | 活病毒0.55 µg/mL | [ |
双特异性VHH | 天然和合成VHH文库 | S1 | VHH-Fc | — | [ |
VHH EEE | 免疫VHH文库 | RBD | 三价VHH | 假病毒 0.52 nmol/L | [ |
Table 1 Preclinical studies of phage display-derived antibodies targeting the spike protein of SARS-CoV-2
抗体名称 Antibody description | 噬菌体抗体库 Phage antibody library | 靶抗原 Target antigen | 抗体类型 Antibody format | 中和活性 Neutralization activity | 参考文献 Reference |
---|---|---|---|---|---|
H014 | 免疫Fab文库 | RBD | 人源化Fab | 假病毒 3 nmol/L 活病毒 38 nmol/L | [ |
IgG1 ab1 | 天然Fab、scFv、VH文库 | RBD | IgG1 | 活病毒200 ng/mL | [ |
HB27 | 免疫Fab文库 | RBD | IgG1 | 活病毒0.22 nmol/L | [ |
II62 | 天然半合成scFv文库 | RBD | scFv、scFv- Fc、IgG1 | — | [ |
VHH-72 | 免疫VHH文库 | S | VHH-Fc | 假病毒 0.2 μg/mL | [ |
H11-D4、H11-H4 | 天然VHH文库 | RBD | VHH-Fc | 活病毒18 nmol/L(H11-D4)、4-6 nmol/L(H11-H4) | [ |
Ty1 | 免疫VHH文库 | RBD | VHH、VHH-Fc | 假病毒0.77 µg/mL(Ty1) 12 ng/mL(Ty1-Fc) | [ |
Nb11-59 | 免疫VHH文库 | RBD | VHH | 活病毒0.55 µg/mL | [ |
双特异性VHH | 天然和合成VHH文库 | S1 | VHH-Fc | — | [ |
VHH EEE | 免疫VHH文库 | RBD | 三价VHH | 假病毒 0.52 nmol/L | [ |
[1] |
Winter G, Milstein C. Man-made antibodies[J]. Nature, 1991, 349(6307):293-299.
doi: 10.1038/349293a0 URL |
[2] |
Alfaleh MA, Alsaab HO, Mahmoud AB, et al. Phage display derived monoclonal antibodies:from bench to bedside[J]. Front Immunol, 2020, 11:1986.
doi: 10.3389/fimmu.2020.01986 URL |
[3] |
Throsby M, van den Brink E, Jongeneelen M, et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells[J]. PLoS One, 2008, 3(12):e3942.
doi: 10.1371/journal.pone.0003942 URL |
[4] |
de Carvalho Nicacio C, Williamson RA, Parren PW, et al. Neutralizing human Fab fragments against measles virus recovered by phage display[J]. J Virol, 2002, 76(1):251-258.
doi: 10.1128/JVI.76.1.251-258.2002 URL |
[5] |
Kramer R, Marissen W, Goudsmit J, et al. The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries[J]. Eur J Immunol, 2005, 35(7):2131-2145.
pmid: 15971273 |
[6] |
Sokullu E, Soleymani Abyaneh H, Gauthier MA. Plant/bacterial virus-based drug discovery, drug delivery, and therapeutics[J]. Pharmaceutics, 2019, 11(5):211.
doi: 10.3390/pharmaceutics11050211 URL |
[7] |
Specthrie L, Bullitt E, Horiuchi K, et al. Construction of a microphage variant of filamentous bacteriophage[J]. J Mol Biol, 1992, 228(3):720-724.
pmid: 1469710 |
[8] |
van Wezenbeek PM, Hulsebos TJ, Schoenmakers JG. Nucleotide sequence of the filamentous bacteriophage M13 DNA genome:comparison with phage fd[J]. Gene, 1980, 11(1/2):129-148.
doi: 10.1016/0378-1119(80)90093-1 URL |
[9] |
Kehoe JW, Kay BK. Filamentous phage display in the new millennium[J]. Chem Rev, 2005, 105(11):4056-4072.
pmid: 16277371 |
[10] |
Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705):1315-1317.
doi: 10.1126/science.4001944 pmid: 4001944 |
[11] |
Hoogenboom HR, Griffiths AD, Johnson KS, et al. Multi-subunit proteins on the surface of filamentous phage:methodologies for displaying antibody(Fab)heavy and light chains[J]. Nucleic Acids Res, 1991, 19(15):4133-4137.
pmid: 1908075 |
[12] |
Rakonjac J, Jovanovic G, Model P. Filamentous phage infection-mediated gene expression:construction and propagation of the gIII deletion mutant helper phage R408d3[J]. Gene, 1997, 198(1/2):99-103.
doi: 10.1016/S0378-1119(97)00298-9 URL |
[13] |
Ledsgaard L, Kilstrup M, Karatt-Vellatt A, et al. Basics of antibody phage display technology[J]. Toxins, 2018, 10(6):236.
doi: 10.3390/toxins10060236 URL |
[14] |
Rondot S, Koch J, Breitling F, et al. A helper phage to improve single-chain antibody presentation in phage display[J]. Nat Biotechnol, 2001, 19(1):75-78.
pmid: 11135557 |
[15] |
Lowman HB, Bass SH, Simpson N, et al. Selecting high-affinity binding proteins by monovalent phage display[J]. Biochemistry, 1991, 30(45):10832-10838.
pmid: 1932005 |
[16] |
Tohidkia MR, Barar J, Asadi F, et al. Molecular considerations for development of phage antibody libraries[J]. J Drug Target, 2012, 20(3):195-208.
doi: 10.3109/1061186X.2011.611517 URL |
[17] |
Dübel S, Stoevesandt O, Taussig MJ, et al. Generating recombinant antibodies to the complete human proteome[J]. Trends Biotechnol, 2010, 28(7):333-339.
doi: 10.1016/j.tibtech.2010.05.001 URL |
[18] |
Schirrmann T, Meyer T, Schütte M, et al. Phage display for the generation of antibodies for proteome research, diagnostics and therapy[J]. Molecules, 2011, 16(1):412-426.
doi: 10.3390/molecules16010412 pmid: 21221060 |
[19] | Kim S, Park I, Park SG, et al. Generation, diversity determination, and application to antibody selection of a human naïve fab library[J]. Mol Cells, 2017, 40(9):655-666. |
[20] |
Bradbury ARM, Marks JD. Antibodies from phage antibody libraries[J]. J Immunol Methods, 2004, 290(1/2):29-49.
doi: 10.1016/j.jim.2004.04.007 URL |
[21] | Tsuruta LR, Dos ML, Moro AM. Display technologies for the selection of monoclonal antibodies for clinical use[M]// Böldicke T. Antibody Engineering.London:intechopen, 2018:47-73. |
[22] |
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications:a mini review of immune antibody phage library repertoire[J]. Int J Biol Macromol, 2020, 163:640-648.
doi: 10.1016/j.ijbiomac.2020.06.268 URL |
[23] |
Kessler C, Pardo A, et al. Novel PSCA targeting scFv-fusion proteins for diagnosis and immunotherapy of prostate cancer[J]. J Cancer Res Clin Oncol, 2017, 143(10):2025-2038.
doi: 10.1007/s00432-017-2472-9 URL |
[24] |
Barbas CF, Bain JD, Hoekstra DM, et al. Semisynthetic combinatorial antibody libraries:a chemical solution to the diversity problem[J]. PNAS, 1992, 89(10):4457-4461.
pmid: 1584777 |
[25] |
Griffiths AD, Williams SC, Hartley O, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires[J]. EMBO J, 1994, 13(14):3245-3260.
doi: 10.1002/j.1460-2075.1994.tb06626.x pmid: 8045255 |
[26] |
Sheets MD, Amersdorfer P, Finnern R, et al. Efficient construction of a large nonimmune phage antibody library:the production of high-affinity human single-chain antibodies to protein antigens[J]. PNAS, 1998, 95(11):6157-6162.
pmid: 9600934 |
[27] |
Chan CE, Lim AP, et al. The role of phage display in therapeutic antibody discovery[J]. Int Immunol, 2014, 26(12):649-657.
doi: 10.1093/intimm/dxu082 URL |
[28] | Andris-Widhopf J, Steinberger P, Fuller R, et al. Generation of human scFv antibody libraries:PCR amplification and assembly of light- and heavy-chain coding sequences[J]. Cold Spring Harb Protoc, 2011, 2011(9):pdb.prot065573. |
[29] |
Chen W, Dimitrov DS. Human monoclonal antibodies and engineered antibody domains as HIV-1 entry inhibitors[J]. Curr Opin HIV AIDS, 2009, 4(2):112-117.
doi: 10.1097/COH.0b013e328322f95e URL |
[30] |
Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody-drug conjugates[J]. Nat Rev Drug Discov, 2017, 16(5):315-337.
doi: 10.1038/nrd.2016.268 URL |
[31] |
Mattes MJ. Radionuclide-antibody conjugates for single-cell cytotoxicity[J]. Cancer, 2002, 94(4 suppl):1215-1223.
pmid: 11877748 |
[32] |
Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy[J]. Oncologist, 2015, 20(2):176-185.
doi: 10.1634/theoncologist.2014-0358 URL |
[33] |
Bradbury AR, Sidhu S, Dübel S, et al. Beyond natural antibodies:the power of in vitro display technologies[J]. Nat Biotechnol, 2011, 29(3):245-254.
doi: 10.1038/nbt.1791 pmid: 21390033 |
[34] |
Dumoulin M, Conrath K, Van Meirhaeghe A, et al. Single-domain antibody fragments with high conformational stability[J]. Protein Sci, 2002, 11(3):500-515.
doi: 10.1110/ps.34602 URL |
[35] |
Zhao AZ, Tohidkia MR, et al. Phage antibody display libraries:a powerful antibody discovery platform for immunotherapy[J]. Crit Rev Biotechnol, 2016, 36(2):276-289.
doi: 10.3109/07388551.2014.958978 URL |
[36] |
Hoogenboom HR. Selecting and screening recombinant antibody libraries[J]. Nat Biotechnol, 2005, 23(9):1105-1116.
pmid: 16151404 |
[37] | Shen W, Li SQ, et al. Blocking agent optimization for nonspecific binding on phage based magnetoelastic biosensors[J]. J Electrochem Soc, 2012, 159(10):B818-B823. |
[38] |
Jones ML, Seldon T, Smede M, et al. A method for rapid, ligation-independent reformatting of recombinant monoclonal antibodies[J]. J Immunol Methods, 2010, 354(1/2):85-90.
doi: 10.1016/j.jim.2010.02.001 URL |
[39] | Bazan J, Całkosiński I, Gamian A. Phage display—A powerful technique for immunotherapy[J]. Hum Vaccines Immunother, 2012, 8(12):1817-1828. |
[40] |
Smith GP, Petrenko VA. Phage display[J]. Chem Rev, 1997, 97(2):391-410.
doi: 10.1021/cr960065d URL |
[41] |
Zhou M, Meyer T, Koch S, et al. Identification of a new epitope for HIV-neutralizing antibodies in the gp41 membrane proximal external region by an Env-tailored phage display library[J]. Eur J Immunol, 2013, 43(2):499-509.
doi: 10.1002/eji.201242974 URL |
[42] |
Nizak C, Monier S, del Nery E, et al. Recombinant antibodies to the small GTPase Rab6 as conformation sensors[J]. Science, 2003, 300(5621):984-987.
doi: 10.1126/science.1083911 URL |
[43] |
Liang WC, Wu XM, et al. Cross-species vascular endothelial growth factor(VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF[J]. J Biol Chem, 2006, 281(2):951-961.
doi: 10.1074/jbc.M508199200 URL |
[44] |
Frenzel A, Kügler J, et al. Designing human antibodies by phage display[J]. Transfus Med Hemother, 2017, 44(5):312-318.
doi: 10.1159/000479633 URL |
[45] |
Froude JW, Pelat T, et al. Generation and characterization of protective antibodies to Marburg virus[J]. MAbs, 2017, 9(4):696-703.
doi: 10.1080/19420862.2017.1299848 URL |
[46] |
Schofield DJ, Pope AR, Clementel V, et al. Application of phage display to high throughput antibody generation and characterization[J]. Genome Biol, 2007, 8(11):R254.
doi: 10.1186/gb-2007-8-11-r254 pmid: 18047641 |
[47] |
Löfblom J, Wernérus H, et al. Fine affinity discrimination by normalized fluorescence activated cell sorting in staphylococcal surface display[J]. FEMS Microbiol Lett, 2005, 248(2):189-198.
pmid: 15964717 |
[48] |
Hoffmann M, Kleine-Weber H, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2):271-280. e8.
doi: S0092-8674(20)30229-4 pmid: 32142651 |
[49] |
Fan X, Cao D, Kong L, et al. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein[J]. Nat Commun, 2020, 11(1):3618.
doi: 10.1038/s41467-020-17371-6 URL |
[50] |
Lv Z, Deng YQ, Ye Q, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody[J]. Science, 2020, 369(6510):1505-1509.
doi: 10.1126/science.abc5881 URL |
[51] | Li W, Drelich A, Martinez DR, et al. Potent neutralization of SARS-CoV-2 in vitro and in an animal model by a human monoclonal antibody[J]. bioRxiv, 2020, 093088. |
[52] |
Zhu L, Deng YQ, Zhang RR, et al. Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2[J]. Natl Sci Rev, 2021, 8(3):nwaa297.
doi: 10.1093/nsr/nwaa297 URL |
[53] |
Parray HA, Chiranjivi AK, Asthana S, et al. Identification of an anti-SARS-CoV-2 receptor-binding domain-directed human monoclonal antibody from a naïve semisynthetic library[J]. J Biol Chem, 2020, 295(36):12814-12821.
doi: 10.1074/jbc.AC120.014918 pmid: 32727845 |
[54] |
Detalle L, Stohr T, Palomo C, et al. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection[J]. Antimicrob Agents Chemother, 2016, 60(1):6-13.
doi: 10.1128/AAC.01802-15 URL |
[55] |
Stalin Raj V, Okba NMA, Gutierrez-Alvarez J, et al. Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection[J]. Sci Adv, 2018, 4(8):eaas9667.
doi: 10.1126/sciadv.aas9667 URL |
[56] |
Hufton SE, Risley P, Ball CR, et al. The breadth of cross sub-type neutralisation activity of a single domain antibody to influenza hemagglutinin can be increased by antibody valency[J]. PLoS One, 2014, 9(8):e103294.
doi: 10.1371/journal.pone.0103294 URL |
[57] |
Ibañez LI, De Filette M, Hultberg A, et al. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection[J]. J Infect Dis, 2011, 203(8):1063-1072.
doi: 10.1093/infdis/jiq168 URL |
[58] |
Laursen NS, Friesen RHE, Zhu X, et al. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin[J]. Science, 2018, 362(6414):598-602.
doi: 10.1126/science.aaq0620 pmid: 30385580 |
[59] |
Wrapp D, De Vlieger D, Corbett KS, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies[J]. Cell, 2020, 181(5):1004-1015.e15.
doi: 10.1016/j.cell.2020.04.031 URL |
[60] |
Huo J, Le Bas A, Ruza RR, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2[J]. Nat Struct Mol Biol, 2020, 27(9):846-854.
doi: 10.1038/s41594-020-0469-6 URL |
[61] |
Hanke L, Vidakovics Perez L, Sheward DJ, et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction[J]. Nat Commun, 2020, 11(1):4420.
doi: 10.1038/s41467-020-18174-5 pmid: 32887876 |
[62] | Gai J, Ma L, Li G, et al. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential[J]. MedComm:Beijing, 2021, 2(1):101-113. |
[63] |
Dong J, Huang B, Jia Z, et al. Development of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interaction with high affinity and avidity[J]. Emerg Microbes Infect, 2020, 9(1):1034-1036.
doi: 10.1080/22221751.2020.1768806 URL |
[64] |
Koenig PA, Das H, Liu H, et al. Structure-Guided Multivalent Nanobodies Block Sars-Cov-2 Infection and Suppress Mutational Escape[J]. Science, 2021, 371(6530):eabe6230.
doi: 10.1126/science.abe6230 URL |
[65] | Wilson PC, Andrews SF. Tools to therapeutically harness the human antibody response[J]. Nat Rev Immunol, 2012, 12(10):709-719. |
[66] | Sun Y, Ho M. Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic[J]. Antib Ther, 2020, 3(4):246-256. |
[1] | XU Chong-xin, ZHANG Xiao, LIU Yuan, ZHONG Jian-feng, XIE Ya-jing, LU Li-na, GAO Mei-jing, LIU Xian-jin. Screening and Identification of Humanized Genetically Engineered Antibody Targeting to Simulate the Anti-insect Function of Bt Cry1C Protein [J]. Biotechnology Bulletin, 2022, 38(5): 191-200. |
[2] | WANG Qiao-ju, HU Yu-meng, WEN Ya-ya, SONG Li, MENG Chuang, PAN Zhi-ming, JIAO Xin-an. Expression and Activity Identification of SARS-CoV-2 S1 Protein [J]. Biotechnology Bulletin, 2022, 38(3): 157-163. |
[3] | LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression [J]. Biotechnology Bulletin, 2022, 38(3): 188-193. |
[4] | CHEN Duo, LIU Yong-zhe. Prokaryotic Expression,Purification and Crystallization of N-terminal Domain of Nucleocapsid Protein in SARS-CoV-2 [J]. Biotechnology Bulletin, 2022, 38(12): 149-155. |
[5] | ZHANG Xi-xi, ZHANG Yi-qing, LI Yu-lin, HAN Xiao, WANG Guo-qiang, WANG Xiao-jun, WANG Xu-dong, WANG Yun-long. Prokaryotic Expression,Purification and Application of N Protein C-terminal Recombinant Protein in Novel Coronavirus(SARS-CoV-2) [J]. Biotechnology Bulletin, 2021, 37(5): 92-97. |
[6] | LI Jia-jun, ZHENG Xiao, SHENG Jie, XU Yao. Novel Coronavirus and Research Progress of Related Clinical Detection Methods [J]. Biotechnology Bulletin, 2021, 37(4): 282-292. |
[7] | GAO Jing-xi, GAO Ke-xing, LU Fei, JI Feng, GUO Zhi-gang. Prediction of SARS-CoV-2 S Protein B Cell Antigenic Epitope Cross-immunizing with SARS-CoV [J]. Biotechnology Bulletin, 2021, 37(10): 169-178. |
[8] | TANG Lu, DONG Li-ping, YIN Mo-li, LIU Lei, DONG Yuan, WANG Hui-yan. Preparation and Identification of a Novel FGF20 Monoclonal Antibody [J]. Biotechnology Bulletin, 2021, 37(10): 179-185. |
[9] | LV Ji-zhou, WU Shao-qiang, ZHANG Zhou, DENG Jun-hua, YUAN Xiang-fen, WANG Cai-xia, FENG Chun-yan, LIN Xiang-mei. Development of a Real-time Fluorescent Double Reverse-Transcription Recombinase Polymerase Amplification Method and Its Application in Detecting SARS-CoV-2 in Food [J]. Biotechnology Bulletin, 2020, 36(11): 238-244. |
[10] | ZHANG Lei, YANG Mu-di, DONG Shun, LIU Ming-qiu. Optimization of Glycosylation Distribution in the Production of Monoclonal Antibody Bio-Medicine by Full Factorial Design [J]. Biotechnology Bulletin, 2019, 35(3): 217-224. |
[11] | NUERTURE Yeernazhaer, QIU Li-fen, ZHANG Fu-chun, ZHANG Mao-xiang. Research Progress on DNA Immunization Technology in the Development of Monoclonal Antibodies [J]. Biotechnology Bulletin, 2019, 35(2): 204-211. |
[12] | LANG Qiao-li, WU Meng, HUANG Nan, HE Qi-lin, GE Liang-peng, YANG Xi. Eukaryotic Expression of Extracellular Domain of Pseudorabies Virus gE Protein and Preparation of Monoclonal Antibodies [J]. Biotechnology Bulletin, 2019, 35(11): 96-103. |
[13] | SUN Jing-juan, QIU Jing-xuan, ZENG Hai-juan, DING Cheng-chao, WANG Guang-bin, LI Jie, WANG Shu-juan, LIU Qing. Antigenic Epitope Analysis and Preparation of Antibody of Listeria monocytogenes CdaA [J]. Biotechnology Bulletin, 2018, 34(5): 163-171. |
[14] | WANG Chen, WANG Jia-qi, ZHAO Liang, FAN Li, LIU Xu-ping, CHEN Min, ZHANG Li-xiang, TAN Wen-song. Effects of Raising pCO2 and Osmolality on the Growth,Metabolism and Productivity of CHO Cells at Maintenance Phase [J]. Biotechnology Bulletin, 2018, 34(3): 217-224. |
[15] | CHEN Chun-ye,LIU Jian,ZHU Rui,LI Shu-xuan,YE Jiang-hui,WANG Wei,PAN De-quan,XU Fei-hai,CHENG Tong,XIA Ning-shao. Preparation and Application of Soluble Human Squamous Cell Carcinoma Antigen Expressed by Escherichia coli [J]. Biotechnology Bulletin, 2017, 33(9): 252-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||