[1] Bandaranayake AD, Almo SC. Recent advances in mammalian protein production[J]. FEBS Lett, 2014, 588(2):253-260. [2] Altman PL, Dittmer D. Respiration and Circulation[M]. Federation of American Societies of Experimental Biology, 1971. [3] Brunner M, Fricke J, Kroll P, et al. Investigation of the interactions of critical scale-up parameters(pH, pO2 and pCO2)on CHO batch performance and critical quality attributes[J]. Bioproc Biosyst Eng, 2017, 40(2):251-263. [4] Schmelzer AE, Miller WM. Hyperosmotic stress and elevated pCO2 alter monoclonal antibody charge distribution and monosaccharide content[J]. Biotechnol Progr, 2002, 18(2):346-353. [5] Kimura R, Miller WM. Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells[J]. Biotechnol Bioeng, 1996, 52:152-160. [6] Goudar CT, Matanguihan R, Long E, et al. Decreased pCO2 accumulation by eliminating bicarbonate addition to high cell-density cultures[J]. Biotechnol Bioeng, 2007, 96(6):1107-1117. [7] Xing Z, Lewis AM, Borys MC, et al. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors[J]. Biotechnol Bioeng, 2017, 114(6):1184-1194. [8] Pfizenmaier J, Matuszczyk JC, Takors R. Changes in intracellular ATP-content of CHO cells as response to hyperosmolality[J]. Biotechnol Progr, 2015, 31(5):1212-1216. [9] Chen F, Fan L, Wang J, et al. Insight into the roles of hypoxanthine and thydimine on cultivating antibody-producing CHO cells:cell growth, antibody production and long-term stability[J]. Appl Microbiol Biotechnol, 2012, 93(1):169-178. [10] 谭文松, 孙亚婷, 赵亮. 适于动物细胞表达产品大规模生产的化学成分明确培养基:中国, CN 104328158 A[P]. 2015-02-04. [11] Yang JD, Lu C, Stasny B, et al. Fed-batch bioreactor process scale-up from 3-L to 2, 500-L scale for monoclonal antibody production from cell culture[J]. Biotechnol Bioeng, 2007, 98(1):141-154. [12] Dietmair S, Timmins NE, Gray PP, et al. Towards quantitative metabolomics of mammalian cells:development of a metabolite extraction protocol[J]. Anal Biochem, 2010, 404(2):155-164. [13] Zhao C, Nambou K, Wei L, et al. Evaluation of metabolome sample preparation methods regarding leakage reduction for the oleaginous yeast Yarrowia lipolytica[J]. Biochem Eng J, 2014, 82:63-70. [14] Zhang XT, Tang HP, Sun YT, et al. Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures[J]. Appl Microbiol Biotechnol, 2015, 99(16):6643-6652. [15] Guile GR, Rudd PM, Wing DR, et al. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles[J]. Anal Biochem, 1996, 240(2):210-226. [16] 陈以衡, 陶姝宇, 刘旭平. 微载体浓度与细胞接种密度对ST细胞生长的影响[J]. 生物技术通报, 2016, 32(4):242-250. [17] Le H, Kabbur S, Pollastrini L, et al. Multivariate analysis of cell culture bioprocess data-lactate consumption as process indicator[J]. J Biotechnol, 2012, 162(2-3):210-223. [18] Chen F, Ye Z, Zhao L, et al. Correlation of antibody production rate with glucose and lactate metabolism in Chinese hamster ovary cells[J]. Biotechnol Lett, 2012, 34(3):425-432. [19] Edwards LJ. Carbon dioxide anaesthesia and succinic dehydrogenase in the corn earworm, Heliothis zea[J]. J Insect Physiol, 1968, 14(8):1045-1048. [20] Friedlander A, Navarro S, Silhacek DL. The effect of carbon dioxide on NADPH production in Ephestia cautella(Wlk. )pupae[J]. Comp Biochem Phys B, 1984, 77(4):839-842. [21] Martínez VS, Dietmair S, Quek LE, et al. Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption[J]. Biotechnol Bioeng, 2013, 110(2):660-666. [22] Shen D, Kiehl TR, Khattak SF, et al. Transcriptomic responses to sodium chloride-induced osmotic stress:A study of industrial fed-batch CHO cell cultures[J]. Biotechnol Progr, 2010, 26(4):1104-1115. [23] Rathore AS. Roadmap for implementation of quality by design(QbD)for biotechnology products[J]. Trends Biotechnol, 2009, 27(9):546-553. |