Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (6): 187-197.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1089
Previous Articles Next Articles
CHEN Hu1(), YANG Zhang-qi1(), SUN Shuang2, LI Peng1, XU Hui-lan1
Received:
2021-08-24
Online:
2022-06-26
Published:
2022-07-11
Contact:
YANG Zhang-qi
E-mail:chenhubeijing-2008@163.com;yangzhangqi@163.com
CHEN Hu, YANG Zhang-qi, SUN Shuang, LI Peng, XU Hui-lan. Expressions and of Genes Response to Signal Substances in MAPK Cascade Pathway Genes in Pinus massoniana[J]. Biotechnology Bulletin, 2022, 38(6): 187-197.
Gene | Forward primer(5'-3') | Reverse primer(5'-3') |
---|---|---|
PmCYP | CAAGGGTTCGTCGTTCCAC | TACGGCGAGAAGTTTGCC |
PmMAPK2 | CCATGGCGGTCAGTATGTGCAG | CATATGGCATTGTCTGCTCGGCA |
PmMAPK6 | CCGCAGCAGCTCCAGTTCAATC | CTCAGTCACGGCGGCCTCTT |
PmMAPK9 | GATCCGCAATGAGAAGGCCAGAAG | CCTTCGTCTGCTTGAGCGTATGC |
PmMAPK15 | CCTCATCAGAGCAGGCATCTTCAG | GAGAAGCAGCACCAAGACAGGAG |
PmMAP2K | GTTGGAGTACATGGACGGTGGAAC | GGTTGCCAGACAGGTGCTGAAG |
PmMAP3K | AGCAGCAGTCCTCCAGCGATC | GAGGTCTTGATTGCCGCCAACAA |
PmMAP4K | ATGCTTCTCTGCCTCCTCTTCTCC | GACGATTCCGAAGTTCCGCAACA |
Table 1 Primer used in the qRT-PCR
Gene | Forward primer(5'-3') | Reverse primer(5'-3') |
---|---|---|
PmCYP | CAAGGGTTCGTCGTTCCAC | TACGGCGAGAAGTTTGCC |
PmMAPK2 | CCATGGCGGTCAGTATGTGCAG | CATATGGCATTGTCTGCTCGGCA |
PmMAPK6 | CCGCAGCAGCTCCAGTTCAATC | CTCAGTCACGGCGGCCTCTT |
PmMAPK9 | GATCCGCAATGAGAAGGCCAGAAG | CCTTCGTCTGCTTGAGCGTATGC |
PmMAPK15 | CCTCATCAGAGCAGGCATCTTCAG | GAGAAGCAGCACCAAGACAGGAG |
PmMAP2K | GTTGGAGTACATGGACGGTGGAAC | GGTTGCCAGACAGGTGCTGAAG |
PmMAP3K | AGCAGCAGTCCTCCAGCGATC | GAGGTCTTGATTGCCGCCAACAA |
PmMAP4K | ATGCTTCTCTGCCTCCTCTTCTCC | GACGATTCCGAAGTTCCGCAACA |
基因 Gene | 开放阅读框 Open reading frame | 氨基酸序列Amino acid sequence/aa | 蛋白分子量Protein mass/kD | 等电点 Protein isoelectric point | 亚细胞定位Subcellular localization | 跨膜结构Transmembrane | 磷酸化位点Kinase phosphorylation(Ser,Thr,Tyr) | 二级结构Secondary structure/% | |||
---|---|---|---|---|---|---|---|---|---|---|---|
α螺旋 Alpha helix | 延伸链 Extended strand | β转角 Beta turn | 无规卷曲 Random coil | ||||||||
PmMAPK6 | 1 173 | 390 | 44.49 | 5.38 | 细胞核 | 无 | 8,10,8 | 42.31 | 13.59 | 4.36 | 39.74 |
PmMAPK9 | 1 839 | 612 | 69.41 | 9.11 | 细胞核 | 无 | 44,23,8 | 44.77 | 10.46 | 4.25 | 40.52 |
PmMAPK2 | 1 119 | 372 | 42.95 | 5.28 | 细胞核 | 无 | 11,11,9 | 43.82 | 14.25 | 5.91 | 36.02 |
PmMAPK15 | 1 731 | 576 | 65.7 | 9.22 | 细胞核 | 无 | 30,16,11 | 38.54 | 12.85 | 5.73 | 42.88 |
PmMAP2K | 1 014 | 337 | 37.62 | 9.02 | 细胞核 | 无 | 15,4,3 | 34.42 | 16.02 | 5.64 | 43.92 |
PmMAP3K | 1 962 | 653 | 72.33 | 5.86 | 细胞核 | 无 | 56,26,7 | 28.18 | 9.8 | 4.44 | 57.58 |
PmMAP4K | 2 748 | 915 | 100.62 | 5.12 | 细胞核 | 无 | 77,41,19 | 29.4 | 12.13 | 4.92 | 53.55 |
Table 2 Bioinformatics analysis of MAPKs protein in P. massoniana
基因 Gene | 开放阅读框 Open reading frame | 氨基酸序列Amino acid sequence/aa | 蛋白分子量Protein mass/kD | 等电点 Protein isoelectric point | 亚细胞定位Subcellular localization | 跨膜结构Transmembrane | 磷酸化位点Kinase phosphorylation(Ser,Thr,Tyr) | 二级结构Secondary structure/% | |||
---|---|---|---|---|---|---|---|---|---|---|---|
α螺旋 Alpha helix | 延伸链 Extended strand | β转角 Beta turn | 无规卷曲 Random coil | ||||||||
PmMAPK6 | 1 173 | 390 | 44.49 | 5.38 | 细胞核 | 无 | 8,10,8 | 42.31 | 13.59 | 4.36 | 39.74 |
PmMAPK9 | 1 839 | 612 | 69.41 | 9.11 | 细胞核 | 无 | 44,23,8 | 44.77 | 10.46 | 4.25 | 40.52 |
PmMAPK2 | 1 119 | 372 | 42.95 | 5.28 | 细胞核 | 无 | 11,11,9 | 43.82 | 14.25 | 5.91 | 36.02 |
PmMAPK15 | 1 731 | 576 | 65.7 | 9.22 | 细胞核 | 无 | 30,16,11 | 38.54 | 12.85 | 5.73 | 42.88 |
PmMAP2K | 1 014 | 337 | 37.62 | 9.02 | 细胞核 | 无 | 15,4,3 | 34.42 | 16.02 | 5.64 | 43.92 |
PmMAP3K | 1 962 | 653 | 72.33 | 5.86 | 细胞核 | 无 | 56,26,7 | 28.18 | 9.8 | 4.44 | 57.58 |
PmMAP4K | 2 748 | 915 | 100.62 | 5.12 | 细胞核 | 无 | 77,41,19 | 29.4 | 12.13 | 4.92 | 53.55 |
基因名/结构域Gene/Domain | MAPK | MAP2K | MAP3K | MAP4K | SPS1 | PknB | BREX-PgiW |
---|---|---|---|---|---|---|---|
PmMAPK6 | 50-386 | 63-377 | 111-260 | ||||
PmMAPK9 | 91-428 | 92-384 | 89-380 | ||||
PmMAPK2 | 32-368 | 42-344 | 95-242 | ||||
PmMAPK15 | 24-361 | 25-317 | 24-233 | 71-246 | |||
PmMAP2K | 56-323 | 59-336 | 112-258 | 64-258 | |||
PmMAP3K | 40-303 | 41-396 | 40-298 | ||||
PmMAP4K | 299-554 | 299-558 | 300-549 |
Table 3 Analysis functional domain of MAPKs protein in P. massoniana
基因名/结构域Gene/Domain | MAPK | MAP2K | MAP3K | MAP4K | SPS1 | PknB | BREX-PgiW |
---|---|---|---|---|---|---|---|
PmMAPK6 | 50-386 | 63-377 | 111-260 | ||||
PmMAPK9 | 91-428 | 92-384 | 89-380 | ||||
PmMAPK2 | 32-368 | 42-344 | 95-242 | ||||
PmMAPK15 | 24-361 | 25-317 | 24-233 | 71-246 | |||
PmMAP2K | 56-323 | 59-336 | 112-258 | 64-258 | |||
PmMAP3K | 40-303 | 41-396 | 40-298 | ||||
PmMAP4K | 299-554 | 299-558 | 300-549 |
Fig. 3 Interaction network analysis of MAPKs proteins identified in P. massoniana and Arabidopsis A:A first-order interaction network of genes related to MAPK cascade pathway in P. massoniana;B:secondary interaction network of genes related to MAPK cascade pathway in P. massoniana;C:a three-level interaction network of genes related to MAPK cascade pathway in P. massoniana;D:the PmMAP4K gene interaction network
Fig. 4 Expressions of MAPKs genes in response to MeJA treatments in P. massoniana Different letters indicate significant differences at the 0.05 level. The same below
[1] |
Nakagami H, et al. Emerging MAP kinase pathways in plant stress signalling[J]. Trends Plant Sci, 2005, 10(7):339-346.
doi: 10.1016/j.tplants.2005.05.009 URL |
[2] |
Ichimura K, Mizoguchi T, Yoshida R, et al. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6[J]. Plant J, 2000, 24(5):655-665.
pmid: 11123804 |
[3] | Joshi R, Wani SH, Singh B, et al. Transcription factors and plants response to drought stress:current understanding and future directions[J]. Front Plant Sci, 2016, 7:1029. |
[4] |
Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase[J]. Plant Cell, 2003, 15(3):745-759.
doi: 10.1105/tpc.008714 URL |
[5] |
Ludwig AA, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants[J]. PNAS, 2005, 102(30):10736-10741.
doi: 10.1073/pnas.0502954102 URL |
[6] | Sun TJ, Nitta Y, Zhang Q, et al. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling[J]. EMBO Rep, 2018, 19(7):e45324. |
[7] |
Jagodzik P, Tajdel-Zielinska M, Ciesla A, et al. Mitogen-activated protein kinase cascades in plant hormone signaling[J]. Front Plant Sci, 2018, 9:1387.
doi: 10.3389/fpls.2018.01387 URL |
[8] | Wersch RV, Gao F, Zhang Y. Mitogen-activated protein kinase kinase 6 negatively regulates anthocyanin induction in Arabidopsis[J]. Plant Signal Behav, 2018, 13(10):e1526000. |
[9] |
Takahashi F, Yoshida R, Ichimura K, et al. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis[J]. Plant Cell, 2007, 19(3):805-818.
pmid: 17369371 |
[10] | 杨章旗, 冯源恒, 谭健晖, 等. 广西马尾松高世代育种策略研究[J]. 广西林业科学, 2018, 47(3):251-256. |
Yang ZQ, Feng YH, Tan JH, et al. Advanced generation breeding strategy of Pinus massoniana in Guangxi[J]. Guangxi For Sci, 2018, 47(3):251-256. | |
[11] |
Xiao F, Zhao Y, Wang XR, et al. Transcriptome analysis of needle and root of Pinus massoniana in response to continuous drought stress[J]. Plants, 2021, 10(4):769.
doi: 10.3390/plants10040769 URL |
[12] | Yang ZQ, Chen H, Jia J, et al. De novo assembly and discovery of metabolic pathways and genes that are involved in defense against pests in Songyun Pinus massoniana Lamb[J]. Bangladesh J Bot, 2016, 45:855-863. |
[13] |
Chen H, Tan J, Liang X, et al. Molecular mechanism of lateral bud differentiation of Pinus massoniana based on high-throughput sequencing[J]. Sci Rep, 2021, 11(1):9033.
doi: 10.1038/s41598-021-87787-7 pmid: 33907200 |
[14] |
Chen H, Yang ZQ, Hu Y, et al. Reference genes selection for quantitative gene expression studies in Pinus massoniana L[J]. Trees, 2016, 30(3):685-696.
doi: 10.1007/s00468-015-1311-3 URL |
[15] |
Zhang X, Wang L, Xu X, et al. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton[J]. BMC Plant Biol, 2014, 14:345.
doi: 10.1186/s12870-014-0345-9 URL |
[16] |
Jonak C, Okrész L, Bögre L, et al. Complexity, cross talk and integration of plant MAP kinase signalling[J]. Curr Opin Plant Biol, 2002, 5(5):415-424.
doi: 10.1016/S1369-5266(02)00285-6 URL |
[17] | 王海波, 等. 小桐子MAPKKKK基因家族的全基因组鉴定及表达分析[J]. 植物生理学报, 2019, 55(3):367-377. |
Wang HB, Guo JY, Tang LZ. Genome-wide identification and expression analysis of MAPKKKK gene family in Jatropha curcas[J]. Plant Physiol J, 2019, 55(3):367-377. | |
[18] |
Jia CG, Zhang LP, et al. Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici[J]. J Exp Bot, 2013, 64(2):637-650.
doi: 10.1093/jxb/ers360 URL |
[19] |
Wasternack C, Strnad M. Jasmonate signaling in plant stress responses and development - active and inactive compounds[J]. N Biotechnol, 2016, 33(5 pt b):604-613.
doi: 10.1016/j.nbt.2015.11.001 URL |
[20] |
Liu Y, Zhang S. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis[J]. Plant Cell, 2004, 16(12):3386-3399.
doi: 10.1105/tpc.104.026609 URL |
[21] | Brader G, Djamei A, Teige M, et al. The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis[J]. Mol Plant Microbe Interactions®, 2007, 20(5):589-596. |
[22] |
Kandoth PK, et al. Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects[J]. PNAS, 2007, 104(29):12205-12210.
doi: 10.1073/pnas.0700344104 URL |
[23] |
Wang J, Pan C, Wang Y, et al. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber[J]. BMC Genomics, 2015, 16:386.
doi: 10.1186/s12864-015-1621-2 pmid: 25976104 |
[24] |
Ding X, Richter T, Chen M, et al. A rice kinase-protein interaction map[J]. Plant Physiol, 2009, 149(3):1478-1492.
doi: 10.1104/pp.108.128298 URL |
[25] |
Burnett EC, Desikan R, Moser RC, et al. ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA[J]. J Exp Bot, 2000, 51(343):197-205.
pmid: 10938826 |
[26] |
Seo S, Katou S, Seto H, et al. The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants[J]. Plant J, 2007, 49(5):899-909.
doi: 10.1111/j.1365-313X.2006.03003.x URL |
[27] | Han Y, et al. Correction:the suppression of WRKY44 by GIGA-NTEA-miR172 pathway is involved in drought response of Arabi-dopsis thaliana[J]. PLoS One, 2015, 10(4):e0124854. |
[28] |
Enders TA, Frick EM, Strader LC. An Arabidopsis kinase cascade influences auxin-responsive cell expansion[J]. Plant J, 2017, 92(1):68-81.
doi: 10.1111/tpj.13635 URL |
[29] |
Danquah A, de Zélicourt A, Boudsocq M, et al. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana[J]. Plant J, 2015, 82(2):232-244.
doi: 10.1111/tpj.12808 URL |
[30] |
Chardin C, Schenk ST, Hirt H, et al. Review:mitogen-activated protein kinases in nutritional signaling in Arabidopsis[J]. Plant Sci, 2017, 260:101-108.
doi: 10.1016/j.plantsci.2017.04.006 URL |
[31] |
Ortiz-Masia D, Perez-Amador MA, Carbonell J, et al. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis[J]. FEBS Lett, 2007, 581(9):1834-1840.
pmid: 17433310 |
[32] |
Ghawana S, Kumar S, Ahuja PS. Early low-temperature responsive mitogen activated protein kinases RaMPK1 and RaMPK2 from Rheum australe D. Don respond differentially to diverse stresses[J]. Mol Biol Rep, 2010, 37(2):933-938.
doi: 10.1007/s11033-009-9726-9 pmid: 19688272 |
[33] |
Hill RD, Liu JH, Durnin D, et al. Abscisic acid structure-activity relationships in barley aleurone layers and protoplasts(biological activity of optically active, oxygenated abscisic acid analogs)[J]. Plant Physiol, 1995, 108(2):573-579.
pmid: 12228494 |
[1] | LIU Chang-yu, CHEN Xun, LONG Yu-qing, CHEN Ya, LIU Xiang-dan, ZHOU Ri-bao. Research Advances in Genes Involved in Ethylene Biosynthesis and Signal Transduction During Flower Senescence [J]. Biotechnology Bulletin, 2019, 35(3): 171-182. |
[2] | DONG Wei-peng, WANG Jun-shi, ZHANG Shao-hua, YAN Jiong. Research Progress of CRISPR System and Its Application in Mice [J]. Biotechnology Bulletin, 2018, 34(5): 57-63. |
[3] | TIAN Xiao-ming, YAN Li-hong, XIANG Guang-feng, JIANG Li-yuan. Research Progress on 4-Coumarate:Coenzyme A Ligase(4CL)in Plants [J]. Biotechnology Bulletin, 2017, 33(4): 19-26. |
[4] | CHEN Zhen-zhu, LI Rui, TIAN Fei ,SHEN Yan-ting, GE Qin-yu. Research Progress on miRNA Detection Techniques with High Sensitivity and High Selectivity [J]. Biotechnology Bulletin, 2016, 32(4): 39-47. |
[5] | WANG Yi-bin, ZHANG Ai-jun, LIU Fang-ming, ZHENG Zhou, MIAO Jin-lai. Advances in Studies on the Acclimation of Antarctic Ice Microalgae to Extreme Environments [J]. Biotechnology Bulletin, 2016, 32(10): 128-134. |
[6] | Wang Wei, Zhang Yujuan, Chen Jie, Liu Jubo, Xia Minxuan, Shen Fafu. Research Progress of MicroRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2015, 31(1): 1-10. |
[7] | Li Xingchun, He Shuanghui. Research Progress of Controlling Conifer Root and Butt Rots by Phlebiopsis gigantea [J]. Biotechnology Bulletin, 2014, 0(7): 26-32. |
[8] | Qin Yu’e Liu Chaoqi. Progress of miRNA Regulation for Nrf2 and Related Antioxidant Genes [J]. Biotechnology Bulletin, 2013, 0(9): 34-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||