Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (10): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1586
ZHAO Jie1,2(), LI An1,2, LIANG Gang1,2, JIN Xin-xin1,2, PAN Li-gang1,2()
Received:
2021-12-23
Online:
2022-10-26
Published:
2022-11-11
Contact:
PAN Li-gang
E-mail:zhaoj@brcast.org.cn;panlg@brcast.org.cn
ZHAO Jie, LI An, LIANG Gang, JIN Xin-xin, PAN Li-gang. Research Progress in the Biological Functions of Plant circRNAs[J]. Biotechnology Bulletin, 2022, 38(10): 1-9.
植物Plants | 测序样本Sequencing samples | circRNA数量Number of circRNAs | 参考文献Reference |
---|---|---|---|
拟南芥 Arabidopsis thaliana | 种子 Seed | 30 923 | [ |
番茄 Solanum lycopersicum L. | 果实 Fruit | 3 796 | [ |
大豆 Glycine max | 叶/根/茎 Leaf/root/stem | 5 372 | [ |
水稻 Oryza sativa L. | 叶片 Leaf | 6 612 | [ |
玉米 Zea mays | 茎 Stem | 1 199 | [ |
小麦 Triticum aestivum L. | 根 Root | 285-478 | [ |
马铃薯 Solanum tuberosum L. | 茎 Stem | 2 098 | [ |
葡萄 Vitis vinifera L. | 根/茎/叶/花/果实 Root/stem/leaf/flower/berry | 1 432 | [ |
沙棘 Hippophae rhamnoides L. | 果实 Fruit | 2 616 | [ |
杜梨 Pyrus betulifolia | 叶片 Leaf | 899 | [ |
猕猴桃 Actinidia | 叶/根/茎 Leaf/root/stem | 3 582 | [ |
茶叶 Camellia sinensis | 叶芽/幼叶 Leaf bud/young leaf | 3 174 | [ |
Table 1 Statistics of identified circRNAs in different plant tissues(2017-2021)
植物Plants | 测序样本Sequencing samples | circRNA数量Number of circRNAs | 参考文献Reference |
---|---|---|---|
拟南芥 Arabidopsis thaliana | 种子 Seed | 30 923 | [ |
番茄 Solanum lycopersicum L. | 果实 Fruit | 3 796 | [ |
大豆 Glycine max | 叶/根/茎 Leaf/root/stem | 5 372 | [ |
水稻 Oryza sativa L. | 叶片 Leaf | 6 612 | [ |
玉米 Zea mays | 茎 Stem | 1 199 | [ |
小麦 Triticum aestivum L. | 根 Root | 285-478 | [ |
马铃薯 Solanum tuberosum L. | 茎 Stem | 2 098 | [ |
葡萄 Vitis vinifera L. | 根/茎/叶/花/果实 Root/stem/leaf/flower/berry | 1 432 | [ |
沙棘 Hippophae rhamnoides L. | 果实 Fruit | 2 616 | [ |
杜梨 Pyrus betulifolia | 叶片 Leaf | 899 | [ |
猕猴桃 Actinidia | 叶/根/茎 Leaf/root/stem | 3 582 | [ |
茶叶 Camellia sinensis | 叶芽/幼叶 Leaf bud/young leaf | 3 174 | [ |
Fig.1 Classification of circular RNAs A:circRNA from exonic and exon-intron RNAs;B:circRNA from intron RNAs;C:circRNA from tRNA introns[23]. In A and B,rectangles in different colors represent exons,green straight lines represent introns,the blue arrows indicate that the canonical splicing produces linear mRNAs,the red arrows represent noncanonical splicing(back-splicing),i.e.,circRNA is formed
Fig.2 circRNA functions EIciRNAs and ciRNAs enriched in nucleus may regulate gene transcription through interaction with Pol II,ecircRNAs act as miRNA sponges,RBP sponges and delivery intermediates in cytoplasmic[23]. Rectangles in different colors represent exons,green straight lines represent introns,and the red arrows represent noncanonical splicing(back-splicing)and circRNAs are formed
植物 Plants | 应激反应 Stress response | 差异表达circRNAs数量 Numbers of differentially expressed circRNAs | 参考文献 Reference |
---|---|---|---|
番茄 Solanum lycopersicum L. | 黄叶卷曲病毒 TYLCV | 83 | [ |
猕猴桃 Actinidia | 丁香假单胞菌 Canker pathogen | 584 | [ |
棉花 Gossypium | 黄萎病 Verticillium wilt | 280 | [ |
大豆 Glycine max | 低温 Low-temperature | 13 | [ |
杨树 Populus L. | 低氮 Low-nitrogen | 163 | [ |
番茄 Solanum lycopersicum L. | 干旱和高温 Drought and heat | 4/7/9 | [ |
大豆 Glycine max | 低磷 Low-phosphorus | 120 | [ |
大豆 Glycine max | 干旱 Drought | 44 | [ |
杜梨 Pyrus betulifolia | 干旱Drought | 33 | [ |
番茄 Solanum lycopersicum L. | 低温 Low-temperature | 383 | [ |
番茄 Solanum lycopersicum L. | 高温 High-temperature | 73 | [ |
玉米/拟南芥 Zea mays/Arabidopsis thaliana | 干旱Drought stress | 357/446 | [ |
Table 2 Studies on plant circRNAs in responding to biotic or abiotic stresses(2017-2020)
植物 Plants | 应激反应 Stress response | 差异表达circRNAs数量 Numbers of differentially expressed circRNAs | 参考文献 Reference |
---|---|---|---|
番茄 Solanum lycopersicum L. | 黄叶卷曲病毒 TYLCV | 83 | [ |
猕猴桃 Actinidia | 丁香假单胞菌 Canker pathogen | 584 | [ |
棉花 Gossypium | 黄萎病 Verticillium wilt | 280 | [ |
大豆 Glycine max | 低温 Low-temperature | 13 | [ |
杨树 Populus L. | 低氮 Low-nitrogen | 163 | [ |
番茄 Solanum lycopersicum L. | 干旱和高温 Drought and heat | 4/7/9 | [ |
大豆 Glycine max | 低磷 Low-phosphorus | 120 | [ |
大豆 Glycine max | 干旱 Drought | 44 | [ |
杜梨 Pyrus betulifolia | 干旱Drought | 33 | [ |
番茄 Solanum lycopersicum L. | 低温 Low-temperature | 383 | [ |
番茄 Solanum lycopersicum L. | 高温 High-temperature | 73 | [ |
玉米/拟南芥 Zea mays/Arabidopsis thaliana | 干旱Drought stress | 357/446 | [ |
[1] |
Chen G, Cui JW, Wang L, et al. Genome-wide identification of circular RNAs in Arabidopsis thaliana[J]. Front Plant Sci, 2017, 8:1678.
doi: 10.3389/fpls.2017.01678 URL |
[2] |
Qu SB, Yang XS, Li XL, et al. Circular RNA:a new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2):141-148.
doi: 10.1016/j.canlet.2015.06.003 URL |
[3] |
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11):3852-3856.
doi: 10.1073/pnas.73.11.3852 URL |
[4] |
Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1):155-160.
pmid: 7678559 |
[5] | Hsiao KY, Sun HS, Tsai SJ. Circular RNA - New member of noncoding RNA with novel functions[J]. Exp Biol Med(Maywood), 2017, 242(11):1136-1141. |
[6] |
Shen YD, Guo XW, Wang WM. Identification and characterization of circular RNAs in zebrafish[J]. FEBS Lett, 2017, 591(1):213-220.
doi: 10.1002/1873-3468.12500 pmid: 27878987 |
[7] |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157.
doi: 10.1261/rna.035667.112 pmid: 23249747 |
[8] |
Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013, 9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 URL |
[9] |
Guo JU, Agarwal V, Guo HL, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7):409.
doi: 10.1186/s13059-014-0409-z pmid: 25070500 |
[10] |
Ye CY, Chen L, Liu C, et al. Widespread noncoding circular RNAs in plants[J]. New Phytol, 2015, 208(1):88-95.
doi: 10.1111/nph.13585 URL |
[11] |
Philips A, Nowis K, Stelmaszczuk M, et al. Arabidopsis thaliana cbp80, c2h2, and flk knockout mutants accumulate increased amounts of circular RNAs[J]. Cells, 2020, 9(9):1937.
doi: 10.3390/cells9091937 URL |
[12] |
Zhou R, Xu LP, Zhao LP, et al. Genome-wide identification of circRNAs involved in tomato fruit coloration[J]. Biochem Biophys Res Commun, 2018, 499(3):466-469.
doi: 10.1016/j.bbrc.2018.03.167 URL |
[13] |
Zhao W, Cheng YH, Zhang C, et al. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean[J]. Sci Rep, 2017, 7(1):5636.
doi: 10.1038/s41598-017-05922-9 pmid: 28717203 |
[14] |
Huang XP, Zhang HY, Guo R, et al. Systematic identification and characterization of circular RNAs involved in flag leaf senescence of rice[J]. Planta, 2021, 253(2):26.
doi: 10.1007/s00425-020-03544-6 pmid: 33410920 |
[15] |
Han Y, Li XX, Yan Y, et al. Identification, characterization, and functional prediction of circular RNAs in maize[J]. Mol Genet Genomics, 2020, 295(2):491-503.
doi: 10.1007/s00438-019-01638-9 pmid: 31894398 |
[16] |
Xu YH, Ren YZ, Lin TB, et al. Identification and characterization of CircRNAs involved in the regulation of wheat root length[J]. Biol Res, 2019, 52(1):19.
doi: 10.1186/s40659-019-0228-5 pmid: 30947746 |
[17] |
Zhou R, Zhu YX, Zhao J, et al. Transcriptome-wide identification and characterization of potato circular RNAs in response to Pectobacterium carotovorum subspecies brasiliense infection[J]. Int J Mol Sci, 2017, 19(1):71.
doi: 10.3390/ijms19010071 URL |
[18] |
Gao Z, Li J, Luo M, et al. Characterization and cloning of grape circular RNAs identified the cold resistance-related vv-circATS1[J]. Plant Physiol, 2019, 180(2):966-985.
doi: 10.1104/pp.18.01331 pmid: 30962290 |
[19] |
Zhang GY, Diao SF, Zhang T, et al. Identification and characterization of circular RNAs during the sea buckthorn fruit development[J]. RNA Biol, 2019, 16(3):354-361.
doi: 10.1080/15476286.2019.1574162 pmid: 30681395 |
[20] |
Wang JX, Lin J, Wang H, et al. Identification and characterization of circRNAs in Pyrus betulifolia Bunge under drought stress[J]. PLoS One, 2018, 13(7):e0200692.
doi: 10.1371/journal.pone.0200692 URL |
[21] |
Wang ZP, Liu YF, Li DW, et al. Identification of circular RNAs in kiwifruit and their species-specific response to bacterial canker pathogen invasion[J]. Front Plant Sci, 2017, 8:413.
doi: 10.3389/fpls.2017.00413 pmid: 28396678 |
[22] |
Tong W, Yu J, Hou Y, et al. Circular RNA architecture and differentiation during leaf bud to young leaf development in tea(Camellia sinensis)[J]. Planta, 2018, 248(6):1417-1429.
doi: 10.1007/s00425-018-2983-x pmid: 30128600 |
[23] | Meng XW, Li X, Zhang PJ, et al. Circular RNA:an emerging key player in RNA world[J]. Brief Bioinform, 2017, 18(4):547-557. |
[24] |
Li SS, Liu YZ, Qiu GZ, et al. Emerging roles of circular RNAs in non-small cell lung cancer(Review)[J]. Oncol Rep, 2021, 45(4):17.
doi: 10.3892/or.2021.7968 URL |
[25] |
Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs[J]. Int J Mol Sci, 2014, 15(6):9331-9342.
doi: 10.3390/ijms15069331 pmid: 24865493 |
[26] |
Lu TT, Cui LL, Zhou Y, et al. Transcriptome-wide investigation of circular RNAs in rice[J]. RNA, 2015, 21(12):2076-2087.
doi: 10.1261/rna.052282.115 pmid: 26464523 |
[27] | Capelari RF, Fonseca GCD, Guzman F, et al. Circular and micro RNAs from Arabidopsis thaliana flowers are simultaneously isolated from AGO-IP libraries[J]. Plants(Basel), 2019, 8(9):302-314. |
[28] | 尹军良, 马东方, 刘乐承, 等. 环状RNA的生物特征及其在植物中的研究进展[J]. 西北植物学报, 2017, 37(12):2510-2518. |
Yin JL, Ma DF, Liu LC, et al. Biology features of circular RNAs and their research progress in plants[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(12):2510-2518. | |
[29] |
Chen L, Zhang P, Fan Y, et al. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize[J]. New Phytol, 2018, 217(3):1292-1306.
doi: 10.1111/nph.14901 pmid: 29155438 |
[30] |
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.
doi: 10.1038/nature11928 URL |
[31] |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441):384-388.
doi: 10.1038/nature11993 URL |
[32] |
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691.
doi: 10.1038/s41576-019-0158-7 pmid: 31395983 |
[33] |
Chen LL. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol, 2016, 17(4):205-211.
doi: 10.1038/nrm.2015.32 URL |
[34] |
Rbbani G, Nedoluzhko A, Galindo-Villegas J, et al. Function of circular RNAs in fish and their potential application as biomarkers[J]. Int J Mol Sci, 2021, 22(13):7119.
doi: 10.3390/ijms22137119 URL |
[35] |
Zheng QP, Bao CY, Guo WJ, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7:11215.
doi: 10.1038/ncomms11215 pmid: 27050392 |
[36] |
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. J Biotechnol, 2016, 238:42-51.
doi: S0168-1656(16)31529-2 pmid: 27671698 |
[37] |
Zeng RF, Zhou JJ, Hu CG, et al. Transcriptome-wide identification and functional prediction of novel and flowering-related circular RNAs from trifoliate orange(Poncirus trifoliata L. Raf. )[J]. Planta, 2018, 247(5):1191-1202.
doi: 10.1007/s00425-018-2857-2 URL |
[38] |
Zhou JP, Yuan MZ, Zhao YX, et al. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice[J]. Plant Biotechnol J, 2021, 19(6):1240-1252.
doi: 10.1111/pbi.13544 pmid: 33440058 |
[39] |
Chi SW, Zang JB, Mele A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps[J]. Nature, 2009, 460(7254):479-486.
doi: 10.1038/nature08170 URL |
[40] |
Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs[J]. Nature, 2012, 482(7385):339-346.
doi: 10.1038/nature10887 URL |
[41] |
Zhang BH. microRNA:a new target for improving plant tolerance to abiotic stress[J]. J Exp Bot, 2015, 66(7):1749-1761.
doi: 10.1093/jxb/erv013 URL |
[42] |
Huang RR, Zhang Y, Han B, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG[J]. Autophagy, 2017, 13(10):1722-1741.
doi: 10.1080/15548627.2017.1356975 pmid: 28786753 |
[43] |
Wang JY, Yang YW, Jin LM, et al. re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection[J]. BMC Plant Biol, 2018, 18(1):104.
doi: 10.1186/s12870-018-1332-3 pmid: 29866032 |
[44] |
Xiang LX, Cai CW, Cheng JR, et al. Identification of circularRNAs and their targets in Gossypium under Verticillium wilt stress based on RNA-seq[J]. PeerJ, 2018, 6:e4500.
doi: 10.7717/peerj.4500 URL |
[45] |
Wang XS, Chang XC, Jing Y, et al. Identification and functional prediction of soybean circRNAs involved in low-temperature responses[J]. J Plant Physiol, 2020, 250:153188.
doi: 10.1016/j.jplph.2020.153188 URL |
[46] |
Liu HM, Yu WW, Wu JT, et al. Identification and characterization of circular RNAs during wood formation of poplars in acclimation to low nitrogen availability[J]. Planta, 2020, 251(2):47.
doi: 10.1007/s00425-020-03338-w pmid: 31925576 |
[47] |
Zhou R, Yu XQ, Ottosen CO, et al. High throughput sequencing of circRNAs in tomato leaves responding to multiple stresses of drought and heat[J]. Hortic Plant J, 2020, 6(1):34-38.
doi: 10.1016/j.hpj.2019.12.004 URL |
[48] |
Lv LL, Yu KY, Lü H, et al. Transcriptome-wide identification of novel circular RNAs in soybean in response to low-phosphorus stress[J]. PLoS One, 2020, 15(1):e0227243.
doi: 10.1371/journal.pone.0227243 URL |
[49] |
Dasmandal T, Rao AR, Sahu S. Identification and characterization of circular RNAs regulating genes responsible for drought stress tolerance in chickpea and soybean[J]. Indian J Genet Plant Breeding, 2020, 80(1). DOI:10.31742/IJGPB.80.1.1.
doi: 10.31742/IJGPB.80.1.1 |
[50] |
Yang XD, Liu YH, Zhang H, et al. Genome-wide identification of circular RNAs in response to low-temperature stress in tomato leaves[J]. Front Genet, 2020, 11:591806.
doi: 10.3389/fgene.2020.591806 URL |
[51] |
Zhou R, Yu XQ, Xu LP, et al. Genome-wide identification of circular RNAs in tomato seeds in response to high temperature[J]. Biol Plant, 2019, 63(1):97-103.
doi: 10.32615/bp.2019.012 URL |
[52] |
Zhang P, Fan Y, Sun XP, et al. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis[J]. Plant J, 2019, 98(4):697-713.
doi: 10.1111/tpj.14267 |
[53] |
Litholdo CG Jr, da Fonseca GC. Circular RNAs and plant stress responses[J]. Adv Exp Med Biol, 2018, 1087:345-353.
doi: 10.1007/978-981-13-1426-1_27 pmid: 30259379 |
[54] |
Conn VM, Hugouvieux V, Nayak A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation[J]. Nat Plants, 2017, 3:17053.
doi: 10.1038/nplants.2017.53 pmid: 28418376 |
[55] |
Tan JJ, Zhou ZJ, Niu YJ, et al. Identification and functional characterization of tomato CircRNAs derived from genes involved in fruit pigment accumulation[J]. Sci Rep, 2017, 7(1):8594.
doi: 10.1038/s41598-017-08806-0 pmid: 28819222 |
[56] |
Wang HY, She GT, Zhou WB, et al. Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus[J]. Endocr J, 2019, 66(5):431-441.
doi: 10.1507/endocrj.EJ18-0291 pmid: 30814439 |
[57] |
Zaiou M. circRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications[J]. Cells, 2020, 9(3):659.
doi: 10.3390/cells9030659 URL |
[58] |
Lee WJ, Moon J, Jeon D, et al. Possible epigenetic regulatory effect of dysregulated circular RNAs in Alzheimer’s disease model[J]. Sci Rep, 2019, 9(1):11956.
doi: 10.1038/s41598-019-48471-z URL |
[59] |
Li YX, Lv ZY, Zhang J, et al. Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer’s disease patients[J]. Metab Brain Dis, 2020, 35(1):201-213.
doi: 10.1007/s11011-019-00497-y URL |
[60] |
Altesha MA, Ni T, Khan A, et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol, 2019, 234(5):5588-5600.
doi: 10.1002/jcp.27384 pmid: 30341894 |
[61] | Hanan M, Simchovitz A, Yayon N, et al. A Parkinson’s disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress[J]. EMBO Mol Med, 2020, 12(9):e11942. |
[62] |
Feng Z, Zhang L, Wang S, et al. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease[J]. Biochem Biophys Res Commun, 2020, 522(2):388-394.
doi: 10.1016/j.bbrc.2019.11.102 URL |
[63] |
Song TF, Xu AL, Zhang ZF, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075[J]. J Cell Physiol, 2019, 234(8):14296-14305.
doi: 10.1002/jcp.28128 pmid: 30633364 |
[64] |
Chaichian S, Shafabakhsh R, Mirhashemi SM, et al. Circular RNAs:a novel biomarker for cervical cancer[J]. J Cell Physiol, 2020, 235(2):718-724.
doi: 10.1002/jcp.29009 pmid: 31240697 |
[65] |
Meng SJ, Zhou HC, Feng ZY, et al. CircRNA:functions and properties of a novel potential biomarker for cancer[J]. Mol Cancer, 2017, 16(1):94.
doi: 10.1186/s12943-017-0663-2 URL |
[66] |
Pan B, Qin J, Liu XX, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer[J]. Front Genet, 2019, 10:1096.
doi: 10.3389/fgene.2019.01096 pmid: 31737058 |
[67] |
Liu F, Zhang H, Xie F, et al. Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis[J]. Oncogene, 2020, 39(8):1696-1709.
doi: 10.1038/s41388-019-1092-z pmid: 31705065 |
[68] |
Li PF, Zhang ZX, Yuan X, et al. Hsa_circ_0001696 modulates cell proliferation and migration in colorectal cancer[J]. Oncol Lett, 2021, 21(2):154.
doi: 10.3892/ol.2020.12415 URL |
[69] |
Ma S, Kong S, Gu XL, et al. As a biomarker for gastric cancer, circPTPN22 regulates the progression of gastric cancer through the EMT pathway[J]. Cancer Cell Int, 2021, 21(1):44.
doi: 10.1186/s12935-020-01701-1 pmid: 33430866 |
[70] | Luo Q, Liu J, Fu BQ, et al. Circular RNAs Hsa_circ_0002715 and Hsa_circ_0035197 in peripheral blood are novel potential biomarkers for new-onset rheumatoid arthritis[J]. Dis Markers, 2019, 2019:2073139. |
[71] |
Wang WW, Zhu D, Zhao ZH, et al. RNA sequencing reveals the expression profiles of circRNA and identifies a four-circRNA signature acts as a prognostic marker in esophageal squamous cell carcinoma[J]. Cancer Cell Int, 2021, 21(1):151.
doi: 10.1186/s12935-021-01852-9 pmid: 33663506 |
[72] |
Li W, Zhong CQ, Jiao J, et al. Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis[J]. Int J Mol Sci, 2017, 18(3):597.
doi: 10.3390/ijms18030597 URL |
[73] |
Yang XS, Wu JR, Ziegler TE, et al. Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize[J]. Plant Physiol, 2011, 157(4):1841-1852.
doi: 10.1104/pp.111.187898 pmid: 21980173 |
[74] |
Zhao W, Chu SS, Jiao YQ. Present scenario of circular RNAs(circRNAs)in plants[J]. Front Plant Sci, 2019, 10:379.
doi: 10.3389/fpls.2019.00379 pmid: 31001302 |
[75] |
Deng QL, Ramsköld D, Reinius B, et al. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells[J]. Science, 2014, 343(6167):193-196.
doi: 10.1126/science.1245316 pmid: 24408435 |
[76] |
Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue[J]. Nat Biotechnol, 2020, 38(5):586-599.
doi: 10.1038/s41587-020-0472-9 pmid: 32393914 |
[77] |
Lu HY, Giordano F, Ning ZM. Oxford nanopore MinION sequencing and genome assembly[J]. Genomics Proteomics Bioinformatics, 2016, 14(5):265-279.
doi: 10.1016/j.gpb.2016.05.004 URL |
[78] |
Oikonomopoulos S, Wang YC, Djambazian H, et al. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations[J]. Sci Rep, 2016, 6:31602.
doi: 10.1038/srep31602 pmid: 27554526 |
[1] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[2] | ZHENG Min-min, LIU Jie, ZHAO Qing. Research Progress and Prospects of Biological Studies on the Medicinal Plant Scutellaria baicalensis [J]. Biotechnology Bulletin, 2023, 39(2): 10-23. |
[3] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[4] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
[5] | ZHANG Hao, LIU Miao-miao, LIU Xiao-na, LI Zong-yu, ZHAO Li-li, YANG Qing-xiang. Impact of Endophytic Microorganisms on the Pharmaco-active Compounds Production in Medicinal Plants:A Review [J]. Biotechnology Bulletin, 2022, 38(8): 41-51. |
[6] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
[7] | QIAN Kai-rong, MA Zeng-ling, LI Ren-hui, CHEN Bin-bin, WANG Min, ZHU Shu-nan, RONG Meng-wei, QIN Wen-li. Progress in the Study of Allelopathy in Plants:A Case Study of Inhibiting Microcystis aerugingosa Growth [J]. Biotechnology Bulletin, 2021, 37(4): 177-193. |
[8] | MA qin, LEI Rui-feng, Dilireba Abudourousuli, Muyesaier Aosiman, Zulihumaer Rouzi, AN Deng-di. Research Progress on the Symbiotic Metabolic of Endophytes and Plants Under Stress [J]. Biotechnology Bulletin, 2021, 37(3): 153-161. |
[9] | GUO Li-li, LI Yu-ying, GUO Da-long, HOU Xiao-gai. Research Progress on High-density Genetic Linkage Map Construction of Important Ornamental Plants:a Review [J]. Biotechnology Bulletin, 2021, 37(1): 246-254. |
[10] | FENG Yi-long, ZHANG Wen-li. Research Progress on DNA Guanine Quadruplex [J]. Biotechnology Bulletin, 2020, 36(7): 23-31. |
[11] | SHI Xiao-ping, CHEN Yin-ping, YAN Zhi-qiang, LUO Yong-qing, LI Yu-qiang, DING Jun-gang, XIE Hai-fan. Research Progress on Plant Allelopathy [J]. Biotechnology Bulletin, 2020, 36(6): 215-222. |
[12] | LIU Jun, JIN Yu, WU Yao-song, LIU Yan, WANG Wen-bin, REN Shan-shan, DIAO Song-feng, CHEN Yu-long. Advances on the Structural Characteristics and Function of Dof Gene in Plant [J]. Biotechnology Bulletin, 2020, 36(10): 180-190. |
[13] | YAN Wu-ping, WU You-gen, YU Jing ,YANG Dong-mei, ZHANG Jun-feng. Research Progress and Prospect of microRNA in Medicinal Plants [J]. Biotechnology Bulletin, 2019, 35(8): 178-185. |
[14] | GAO Meng-di, SHENG Mao-yin, FU Ji-feng. Effects of Nanomaterials on Plant Growth and Development [J]. Biotechnology Bulletin, 2019, 35(7): 172-180. |
[15] | LIN Li, LI Yang-rui, AN Qian-li. Biological Nitrogen Fixation in Association with Sugarcane:Retrospect and Prospect [J]. Biotechnology Bulletin, 2019, 35(10): 46-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||