Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (10): 235-242.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1618
Previous Articles Next Articles
ZHANG Jian1,2,3(), CAI Heng1, SHEN Zhen-hao1, LIU Zhong-hao1, ZHAO Juan4, ZHANG Qiao-zhen5, GAO Qiang1,2,3()
Received:
2021-12-30
Online:
2022-10-26
Published:
2022-11-11
Contact:
GAO Qiang
E-mail:zj96sk@tust.edu.cn;gaoqiang@tust.edu.cn
ZHANG Jian, CAI Heng, SHEN Zhen-hao, LIU Zhong-hao, ZHAO Juan, ZHANG Qiao-zhen, GAO Qiang. Nicotinic Acid Promotes γ-aminobutyric Acid Biosynthesis in Lactobacillus brevis[J]. Biotechnology Bulletin, 2022, 38(10): 235-242.
Fig.1 Changes in GABA yield,OD and glucose in experi-mental groups(nicotinic acid)and control groups at different fermentation times A:Changes in GABA yield;B:changes in OD value and glucose
编号No. | 代谢物Metabolites | 加合离子Addition of ions | 调节趋势Trend of change | 相关代谢通路Related metabolic pathways |
---|---|---|---|---|
1 | 组氨酸 | (M+H-H2O)+ | ↓* | 组氨酸、天冬氨酸代谢 |
2 | 二十二碳-13-烯酸 | (M+H-H2O)+ | ↑* | 脂质代谢 |
3 | 脯氨酸 | (M+H)+ | ↑** | 脯氨酸代谢 |
4 | 鸟氨酸 | (M+H-H2O)+ | ↑** | 精氨酸代谢 |
5 | L-天冬氨酸 | (M+H)+ | ↑* | 组氨酸、天冬氨酸代谢 |
6 | L-丝氨酸 | (M+H)+ | ↑** | 丝氨酸代谢 |
7 | 脯氨酸-苏氨酸 | (M+H)+ | ↑*** | 二肽 |
8 | 脯氨酸-天冬酰胺 | (M+NH4)+ | ↑** | 二肽 |
9 | 二十二碳二烯酸(11(Z),14(Z)) | (2M+H)+ | ↑** | 脂质代谢 |
10 | 氨基己二酸 | (M+H-H2O)+ | ↑** | 脂质代谢 |
11 | 精氨酸-半胱氨酸 | (M+CH3CN+H)+ | ↑* | 二肽 |
12 | 20-羟二十烷四烯酸(20-HETE) | (M-H)- | ↑* | 脂质代谢 |
13 | 1-棕榈酰2-油酰磷脂酰甘油 | (M-H)- | ↑*** | 脂质代谢 |
14 | 谷氨酰胺 | (M-H)- | ↑** | 谷氨酸代谢 |
15 | D-天冬氨酸 | (M-H)- | ↑* | 组氨酸、天冬氨酸代谢 |
16 | 腺苷一磷酸(AMP) | (M+H)+ | ↓** | 嘌呤代谢 |
17 | 尿苷一磷酸(UMP) | (M+H)+ | ↓** | 嘧啶代谢 |
18 | 乙酰胆碱 | (M+H)+ | ↓** | 脂质代谢 |
19 | 6-磷酸甘露糖 | (M+H-H2O)+ | ↓*** | 碳代谢 |
20 | 艾杜醇 | (M+Na)+ | ↓*** | / |
21 | 焦磷酸硫胺素 | M+ | ↓** | 维生素代谢 |
22 | 甜菜碱 | (M+H)+ | ↓** | 氨基酸代谢 |
23 | 单棕榈酸甘油 | (M+H-H2O)+ | ↓** | 脂质代谢 |
24 | 酪胺 | (M+H)+ | ↓*** | 酪氨酸代谢 |
25 | 烟酸核苷酸 | (M+H)+ | ↓** | 烟酸代谢 |
26 | 肌醇半乳糖苷 | (M+CH3COO)- | ↓** | / |
27 | 植酸 | (M-H)- | ↓** | 肌醇磷酸代谢 |
28 | 2-磷酸甘油酸 | (M-H)- | ↓** | 糖酵解 |
29 | 肌苷酸(IMP) | (M-H2O-H)- | ↓*** | 嘌呤代谢 |
30 | 1-磷酸甘露糖 | (M-H)- | ↓*** | 碳代谢 |
31 | 十八碳二烯酸(18:2(9Z,12Z)) | (M+H-H2O)+ | ↑** | 脂质代谢 |
32 | N-乙酰鸟氨酸 | (M+H)+ | ↑* | 谷氨酸、鸟氨酸代谢 |
33 | N-乙酰天冬氨酸 | (M-H)- | ↑** | 谷氨酸、天冬氨酸代谢 |
Table 1 Significant difference metabolites in positive and negative ion mode
编号No. | 代谢物Metabolites | 加合离子Addition of ions | 调节趋势Trend of change | 相关代谢通路Related metabolic pathways |
---|---|---|---|---|
1 | 组氨酸 | (M+H-H2O)+ | ↓* | 组氨酸、天冬氨酸代谢 |
2 | 二十二碳-13-烯酸 | (M+H-H2O)+ | ↑* | 脂质代谢 |
3 | 脯氨酸 | (M+H)+ | ↑** | 脯氨酸代谢 |
4 | 鸟氨酸 | (M+H-H2O)+ | ↑** | 精氨酸代谢 |
5 | L-天冬氨酸 | (M+H)+ | ↑* | 组氨酸、天冬氨酸代谢 |
6 | L-丝氨酸 | (M+H)+ | ↑** | 丝氨酸代谢 |
7 | 脯氨酸-苏氨酸 | (M+H)+ | ↑*** | 二肽 |
8 | 脯氨酸-天冬酰胺 | (M+NH4)+ | ↑** | 二肽 |
9 | 二十二碳二烯酸(11(Z),14(Z)) | (2M+H)+ | ↑** | 脂质代谢 |
10 | 氨基己二酸 | (M+H-H2O)+ | ↑** | 脂质代谢 |
11 | 精氨酸-半胱氨酸 | (M+CH3CN+H)+ | ↑* | 二肽 |
12 | 20-羟二十烷四烯酸(20-HETE) | (M-H)- | ↑* | 脂质代谢 |
13 | 1-棕榈酰2-油酰磷脂酰甘油 | (M-H)- | ↑*** | 脂质代谢 |
14 | 谷氨酰胺 | (M-H)- | ↑** | 谷氨酸代谢 |
15 | D-天冬氨酸 | (M-H)- | ↑* | 组氨酸、天冬氨酸代谢 |
16 | 腺苷一磷酸(AMP) | (M+H)+ | ↓** | 嘌呤代谢 |
17 | 尿苷一磷酸(UMP) | (M+H)+ | ↓** | 嘧啶代谢 |
18 | 乙酰胆碱 | (M+H)+ | ↓** | 脂质代谢 |
19 | 6-磷酸甘露糖 | (M+H-H2O)+ | ↓*** | 碳代谢 |
20 | 艾杜醇 | (M+Na)+ | ↓*** | / |
21 | 焦磷酸硫胺素 | M+ | ↓** | 维生素代谢 |
22 | 甜菜碱 | (M+H)+ | ↓** | 氨基酸代谢 |
23 | 单棕榈酸甘油 | (M+H-H2O)+ | ↓** | 脂质代谢 |
24 | 酪胺 | (M+H)+ | ↓*** | 酪氨酸代谢 |
25 | 烟酸核苷酸 | (M+H)+ | ↓** | 烟酸代谢 |
26 | 肌醇半乳糖苷 | (M+CH3COO)- | ↓** | / |
27 | 植酸 | (M-H)- | ↓** | 肌醇磷酸代谢 |
28 | 2-磷酸甘油酸 | (M-H)- | ↓** | 糖酵解 |
29 | 肌苷酸(IMP) | (M-H2O-H)- | ↓*** | 嘌呤代谢 |
30 | 1-磷酸甘露糖 | (M-H)- | ↓*** | 碳代谢 |
31 | 十八碳二烯酸(18:2(9Z,12Z)) | (M+H-H2O)+ | ↑** | 脂质代谢 |
32 | N-乙酰鸟氨酸 | (M+H)+ | ↑* | 谷氨酸、鸟氨酸代谢 |
33 | N-乙酰天冬氨酸 | (M-H)- | ↑** | 谷氨酸、天冬氨酸代谢 |
Fig. 3 Effect of nicotinic acid on cell membrane permeabi-lity and integrity of L. brevis A:Blank control group under bright field. B:Blank control group under red fluorescence. C:Experimental group under bright field(add nicotinic acid). D:Experimental group under red fluorescence
[1] |
Ngo DH, Vo TS. An updated review on pharmaceutical properties of gamma-aminobutyric acid[J]. Molecules, 2019, 24(15):2678.
doi: 10.3390/molecules24152678 URL |
[2] |
Li HX, Cao YS. Lactic acid bacterial cell factories for gamma-aminobutyric acid[J]. Amino Acids, 2010, 39(5):1107-1116.
doi: 10.1007/s00726-010-0582-7 pmid: 20364279 |
[3] | 王建峰, 任举. γ-氨基丁酸的生理作用与制备方法综述[J]. 山东化工, 2013, 42(2):51-52, 55. |
Wang JF, Ren J. γ-aminobutyric acid physiological function and preparation methods were reviewed[J]. Shandong Chem Ind, 2013, 42(2):51-52, 55. | |
[4] |
Liu YP, Tang HZ, Lin ZL, et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation[J]. Biotechnol Adv, 2015, 33(7):1484-1492.
doi: 10.1016/j.biotechadv.2015.06.001 pmid: 26057689 |
[5] | 王凯凯, 孙朦, 宋佳敏, 等. γ-氨基丁酸(GABA)形成机理及富集方法的研究进展[J]. 食品工业科技, 2018, 39(14):323-329. |
Wang KK, Sun M, Song JM, et al. Research progress in the formation mechanism and accumulation methods of γ-aminobutyric acid(GABA)[J]. Sci Technol Food Ind, 2018, 39(14):323-329. | |
[6] |
Lund P, Tramonti A, de Biase D. Coping with low pH:molecular strategies in neutralophilic bacteria[J]. FEMS Microbiol Rev, 2014, 38(6):1091-1125.
doi: 10.1111/1574-6976.12076 URL |
[7] |
Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis[J]. Nat Rev Microbiol, 2011, 9(5):330-343.
doi: 10.1038/nrmicro2549 pmid: 21464825 |
[8] | 孙丽慧, 李胜男, 宫宇晴, 等. 短乳杆菌DLF-19076全细胞催化合成γ-氨基丁酸[J]. 食品科技, 2019, 44(8):31-36. |
Sun LH, Li SN, Gong YQ, et al. Synthesis of γ-aminobutyric acid by whole cells of Lactobacillus brevis DLF-19076[J]. Food Sci Technol, 2019, 44(8):31-36. | |
[9] |
Lyu CJ, Zhao WR, Hu S, et al. Physiology-oriented engineering strategy to improve gamma-aminobutyrate production in Lactobacillus brevis[J]. J Agric Food Chem, 2017, 65(4):858-866.
doi: 10.1021/acs.jafc.6b04442 URL |
[10] |
Zhang K, Ni Y. Tyrosine decarboxylase from Lactobacillus brevis:soluble expression and characterization[J]. Protein Expr Purif, 2014, 94:33-39.
doi: 10.1016/j.pep.2013.10.018 URL |
[11] | 朱黎君, 陈航娟, 肖正群, 等. 酪氨酸脱羧酶产生菌的筛选及脱羧条件研究[J]. 发酵科技通讯, 2015, 44(1):38-43. |
Zhu LJ, Chen HJ, Xiao ZQ, et al. Screening for tyrosine decarboxylase producing strain and optimization of its decarboxylation conditions[J]. Bull Ferment Sci Technol, 2015, 44(1):38-43. | |
[12] |
Miyoshi M, Usami M, Kajita A, et al. Effect of oral tributyrin treatment on lipid mediator profiles in endotoxin-induced hepatic injury[J]. Kobe J Med Sci, 2020, 66(4):E129-E138.
pmid: 33994516 |
[13] |
Kang HR, Kim HS, Mah JH, et al. Tyramine reduction by tyrosine decarboxylase inhibitor in Enterococcus faecium for tyramine controlled cheonggukjang[J]. Food Sci Biotechnol, 2017, 27(1):87-93.
doi: 10.1007/s10068-017-0205-0 URL |
[14] | 胡梦裳, 张云艳, 万建美, 等. 不同浓度的碘化丙啶染色对细胞周期分布的影响[J]. 激光杂志, 2015, 36(1):144-147. |
Hu MS, Zhang YY, Wan JM, et al. Study on the effect of different concentrations of propidium iodide in cell cycle distribution experiment[J]. Laser J, 2015, 36(1):144-147. | |
[15] | 冯宇, 高年发, 张颖, 等. 短乳杆菌生产γ-氨基丁酸培养基的优化[J]. 现代食品科技, 2010, 26(1):34-37. |
Feng Y, Gao NF, Zhang Y, et al. Optimization of fermentation medium for γ-aminobutyric acid production by Lactobacillus brevis[J]. Mod Food Sci Technol, 2010, 26(1):34-37. | |
[16] | 石秀峰. 利用短乳杆菌制备γ-氨基丁酸的研究[D]. 天津: 天津科技大学, 2016. |
Shi XF. Study on the preparation of γ-aminobutyric acid by Lactobacillus brevis[D]. Tianjin: Tianjin University of Science & Technology, 2016. | |
[17] | 李俊南, 侯艳, 孙凤宇, 等. OPLS方法的原理及其在代谢组学数据判别分析中的应用[J]. 中国卫生统计, 2014, 31(5):765-769. |
Li JN, Hou Y, Sun FY, et al. The theoretical properties of orthogonal projection to latent structures(OPLS)and its application in metabolomics data analysis[J]. Chin J Heal Stat, 2014, 31(5):765-769. | |
[18] |
Wu W, Jiao CX, Li H, et al. LC-MS based metabolic and metabonomic studies of Panax ginseng[J]. Phytochem Anal, 2018, 29(4):331-340.
doi: 10.1002/pca.2752 URL |
[19] |
Huang Q, Tan YX, Yin PY, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics[J]. Cancer Res, 2013, 73(16):4992-5002.
doi: 10.1158/0008-5472.CAN-13-0308 pmid: 23824744 |
[20] |
Newbold A, Martin BP, Cullinane C, et al. Detection of apoptotic cells using propidium iodide staining[J]. Cold Spring Harb Protoc, 2014, 2014(11):1202-1206.
doi: 10.1101/pdb.prot082545 pmid: 25368311 |
[21] | Russell NJ. Cold adaptation of microorganisms[J]. Philos Trans Royal Soc Lond Ser B Biol Sci, 1990, 326(1237):595-608, discussion 608. |
[22] |
Denich TJ, Beaudette LA, Lee H, et al. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes[J]. J Microbiol Methods, 2003, 52(2):149-182.
pmid: 12459238 |
[23] | Alia MJ, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants[J]. Curr Sci, 2002, 82(5):525-532. |
[24] |
Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. Plant J, 2002, 29(4):417-426.
doi: 10.1046/j.0960-7412.2001.01227.x URL |
[25] |
Glaasker E, Konings WN, Poolman B. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum[J]. J Bacteriol, 1996, 178(3):575-582.
pmid: 8550485 |
[26] | 高飞雄, 梁引库, 李云祥. 蒲公英植酸对沙门氏菌抑制作用及其抑菌机理研究[J]. 天然产物研究与开发, 2019, 31(6):975-980, 985. |
Gao FX, Liang YK, Li YX. Antibacterial effect and mechanism of dandelion phytic acid on Salmonella[J]. Nat Prod Res Dev, 2019, 31(6):975-980, 985. |
[1] | SUN Shu-fang, LUO Yong-li, LI Chun-hui, JIN Min, XU Qian. Determination of Lignin Monomer Crosslinking Structures in Wheat Stems by UPLC-MS/MS [J]. Biotechnology Bulletin, 2022, 38(10): 66-72. |
[2] | MA Xiao-xiang, LIU Ya-yue, NIE Ying-ying, LI Yan-mei, WANG Yuan, XUE Xin-yi, HONG Peng-zhi, ZHANG Yi. LC-MS/MS Based Molecular Network Analysis of the Effects of Chemical Regulation on the Secondary Metabolites and Biological Activities of a Fungal Strain Aspergillus terreus C23-3 [J]. Biotechnology Bulletin, 2021, 37(8): 95-110. |
[3] | MENG Li-ná, PENG Chun-ying, LI Tie-dong, LI Bo-sheng. Proteomic ánálysis of Spiruliná plátensis in Response to ársenic Stress [J]. Biotechnology Bulletin, 2020, 36(4): 107-116. |
[4] | Fan Xuehai, Zhu Yishen, Chen Lanting, Li Wenhui, Wei Ping. Applications of Liquid Chromatography-Mass Spectrometry in the Qualitative Analysis of Peptides and Proteins [J]. Biotechnology Bulletin, 2014, 0(6): 62-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||