Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (11): 10-20.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0097
Previous Articles Next Articles
ZHENG Xiang1(), DUAN Zuo-ping2, ZHANG Jie3, PAN Su-jun1, DAI Liang-ying1, LIU Shi-ming1, LI Wei1()
Received:
2022-01-21
Online:
2022-11-26
Published:
2022-12-01
Contact:
LI Wei
E-mail:920108871@qq.com;liwei350551@163.com
ZHENG Xiang, DUAN Zuo-ping, ZHANG Jie, PAN Su-jun, DAI Liang-ying, LIU Shi-ming, LI Wei. Research Progress on Effector of Phytophthora sojae[J]. Biotechnology Bulletin, 2022, 38(11): 10-20.
[1] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286 URL |
[2] |
Couto D, Zipfel C. Regulation of pattern recognition receptor signalling in plants[J]. Nat Rev Immunol, 2016, 16(9):537-552.
doi: 10.1038/nri.2016.77 pmid: 27477127 |
[3] |
Dou DL, Zhou JM. Phytopathogen effectors subverting host immunity:different foes, similar battleground[J]. Cell Host Microbe, 2012, 12(4):484-495.
doi: 10.1016/j.chom.2012.09.003 URL |
[4] |
Whisson SC, Boevink PC, Moleleki L, et al. A translocation signal for delivery of oomycete effector proteins into host plant cells[J]. Nature, 2007, 450(7166):115-118.
doi: 10.1038/nature06203 URL |
[5] |
Sharpee WC, Dean RA. Form and function of fungal and oomycete effectors[J]. Fungal Biol Rev, 2016, 30(2):62-73.
doi: 10.1016/j.fbr.2016.04.001 URL |
[6] |
Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes[J]. Annu Rev Phytopathol, 2006, 44:41-60.
pmid: 16448329 |
[7] | 张雄. 大豆疫霉菌基因组重测序与致病相关基因的生物信息学研究[D]. 南京: 南京农业大学, 2018. |
Zhang X. Bioinformatics study of genome resequencing and virulence related genes in Phytophthora sojae[D]. Nanjing: Nanjing Agricultural University, 2018. | |
[8] |
Bishop JG, Ripoll DR, Bashir S, et al. Selection on Glycine β-1, 3-endoglucanase genes differentially inhibited by a Phytophthora glucanase inhibitor protein[J]. Genetics, 2005, 169(2):1009-1019.
pmid: 15545660 |
[9] |
Ma ZC, Song TQ, Zhu L, et al. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP[J]. Plant Cell, 2015, 27(7):2057-2072.
doi: 10.1105/tpc.15.00390 URL |
[10] |
Qutob D, Kamoun S, Gijzen M. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy[J]. Plant J, 2002, 32(3):361-373.
doi: 10.1046/j.1365-313X.2002.01439.x URL |
[11] |
Dong SM, Kong GH, Qutob D, et al. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity[J]. Mol Plant Microbe Interact, 2012, 25(7):896-909.
doi: 10.1094/MPMI-01-12-0023-R URL |
[12] |
Tyler BM, Tripathy S, Zhang XM, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis[J]. Science, 2006, 313(5791):1261-1266.
doi: 10.1126/science.1128796 URL |
[13] |
Qutob D, Tedman-Jones J, Dong SM, et al. Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a[J]. PLoS One, 2009, 4(4):e5066.
doi: 10.1371/journal.pone.0005066 URL |
[14] | Na R, Yu D, Chapman BP, et al. Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus[J]. PLoS One, 2014, 9(2):e89738. |
[15] | Dong SM, Yin WX, Kong GH, et al. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity[J]. PLoS Pathog, 2011, 7(11):e1002353. |
[16] |
Torto TA, Li S, Styer A, et al. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora[J]. Genome Res, 2003, 13(7):1675-1685.
doi: 10.1101/gr.910003 URL |
[17] | Amaro TMMM, Thilliez GJA, Motion GB, et al. A perspective on CRN proteins in the genomics age:evolution, classification, delivery and function revisited[J]. Front Plant Sci, 2017, 8:99. |
[18] | Ai G, Xia QY, Song TQ, et al. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling[J]. PLoS Pathog, 2021, 17(3):e1009388. |
[19] |
Schornack S, van Damme M, Bozkurt TO, et al. Ancient class of translocated oomycete effectors targets the host nucleus[J]. Proc Natl Acad Sci USA, 2010, 107(40):17421-17426.
doi: 10.1073/pnas.1008491107 URL |
[20] | Stam R, Jupe J, Howden AJM, et al. Identification and characterisation CRN effectors in Phytophthora capsici shows modularity and functional diversity[J]. PLoS One, 2013, 8(3):e59517. |
[21] | Song TQ, Ma ZC, Shen DY, et al. An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters[J]. PLoS Pathog, 2015, 11(12):e1005348. |
[22] |
Zhang MX, Li Q, Liu TL, et al. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases[J]. Plant Physiol, 2015, 167(1):164-175.
doi: 10.1104/pp.114.252437 URL |
[23] |
Liu TL, Song TQ, Zhang X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J]. Nat Commun, 2014, 5:4686.
doi: 10.1038/ncomms5686 pmid: 25156390 |
[24] |
Shan WX, Cao M, Leung D, et al. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b[J]. Mol Plant Microbe Interact, 2004, 17(4):394-403.
doi: 10.1094/MPMI.2004.17.4.394 URL |
[25] |
Jiang RHY, Tripathy S, Govers F, et al. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members[J]. PNAS, 2008, 105(12):4874-4879.
doi: 10.1073/pnas.0709303105 pmid: 18344324 |
[26] |
Win J, Kamoun S. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes[J]. Plant Signal Behav, 2008, 3(4):251-253.
doi: 10.4161/psb.3.4.5182 pmid: 19704645 |
[27] |
Wawra S, Trusch F, Matena A, et al. The RxLR motif of the host targeting effector AVR3a of Phytophthora infestans is cleaved before secretion[J]. Plant Cell, 2017, 29(6):1184-1195.
doi: 10.1105/tpc.16.00552 URL |
[28] |
Haas BJ, Kamoun S, Zody MC, et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans[J]. Nature, 2009, 461(7262):393-398.
doi: 10.1038/nature08358 URL |
[29] |
Grenville-Briggs LJ, Avrova AO, Hay RJ, et al. Identification of appressorial and mycelial cell wall proteins and a survey of the membrane proteome of Phytophthora infestans[J]. Fungal Biol, 2010, 114(9):702-723.
doi: 10.1016/j.funbio.2010.06.003 URL |
[30] |
Dou DL, Kale SD, Wang X, et al. RXLR-mediated entry of Phy-tophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery[J]. Plant Cell, 2008, 20(7):1930-1947.
doi: 10.1105/tpc.107.056093 URL |
[31] |
Kale SD, Gu B, Capelluto DGS, et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells[J]. Cell, 2010, 142(2):284-295.
doi: 10.1016/j.cell.2010.06.008 pmid: 20655469 |
[32] |
Drin G, Cottin S, Blanc E, et al. Studies on the internalization mechanism of cationic cell-penetrating peptides[J]. J Biol Chem, 2003, 278(33):31192-31201.
doi: 10.1074/jbc.M303938200 pmid: 12783857 |
[33] |
Goldberg DE, Cowman AF. Moving in and renovating:exporting proteins from Plasmodium into host erythrocytes[J]. Nat Rev Microbiol, 2010, 8(9):617-621.
doi: 10.1038/nrmicro2420 pmid: 20706280 |
[34] |
Sun FR, Kale SD, Azurmendi HF, et al. Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry[J]. Mol Plant Microbe Interact, 2013, 26(3):330-344.
doi: 10.1094/MPMI-07-12-0184-R URL |
[35] |
Wawra S, Agacan M, Boddey JA, et al. Avirulence protein 3a(AVR3a)from the potato pathogen Phytophthora infestans forms homodimers through its predicted translocation region and does not specifically bind phospholipids[J]. J Biol Chem, 2012, 287(45):38101-38109.
doi: 10.1074/jbc.M112.395129 URL |
[36] |
Yaeno T, Li H, Chaparro-Garcia A, et al. Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity[J]. Proc Natl Acad Sci USA, 2011, 108(35):14682-14687.
doi: 10.1073/pnas.1106002108 URL |
[37] |
Rose JKC, Ham KS, Darvill AG, et al. Molecular cloning and characterization of glucanase inhibitor proteins:coevolution of a counterdefense mechanism by plant pathogens[J]. Plant Cell, 2002, 14(6):1329-1345.
doi: 10.1105/tpc.002253 URL |
[38] |
Ma ZC, Zhu L, Song TQ, et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor[J]. Science, 2017, 355(6326):710-714.
doi: 10.1126/science.aai7919 URL |
[39] |
Xia YQ, Ma ZC, Qiu M, et al. N - glycosylation shields Phytophthora sojae apoplastic effector PsXEG1 from a specific host aspartic protease[J]. Proc Natl Acad Sci USA, 2020, 117(44):27685-27693.
doi: 10.1073/pnas.2012149117 URL |
[40] |
Guo BD, Wang HN, Yang B, et al. Phytophthora sojae effector PsAvh240 inhibits host aspartic protease secretion to promote infection[J]. Mol Plant, 2019, 12(4):552-564.
doi: 10.1016/j.molp.2019.01.017 URL |
[41] |
Xu YP, Zhang YH, Zhu JY, et al. Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP[J]. Plant Physiol, 2021, 187(1):321-335.
doi: 10.1093/plphys/kiab239 URL |
[42] | Kong GH, Zhao Y, Jing MF, et al. The activation of Phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase activity of Avr3b[J]. PLoS Pathog, 2015, 11(8):e1005139. |
[43] |
Huang J, Chen L, Lu XY, et al. Natural allelic variations provide insights into host adaptation of Phytophthora avirulence effector PsAvr3c[J]. New Phytol, 2019, 221(2):1010-1022.
doi: 10.1111/nph.15414 pmid: 30169906 |
[44] | Gu B, Shao GD, Gao WX, et al. Transcriptional variability associated with CRISPR-mediated gene replacements at the Phytophthora sojae Avr1b-1 locus[J]. Front Microbiol, 2021, 12:645331. |
[45] |
Yang B, Wang QQ, Jing MF, et al. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression[J]. New Phytol, 2017, 214(1):361-375.
doi: 10.1111/nph.14430 pmid: 28134441 |
[46] |
Berger SL. The complex language of chromatin regulation during transcription[J]. Nature, 2007, 447(7143):407-412.
doi: 10.1038/nature05915 URL |
[47] |
Kong L, Qiu XF, Kang JG, et al. A Phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection[J]. Curr Biol, 2017, 27(7):981-991.
doi: 10.1016/j.cub.2017.02.044 URL |
[48] |
Qiao YL, Liu L, Xiong Q, et al. Oomycete pathogens encode RNA silencing suppressors[J]. Nat Genet, 2013, 45(3):330-333.
doi: 10.1038/ng.2525 pmid: 23377181 |
[49] |
Xiong Q, Ye WW, Choi D, et al. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana[J]. Mol Plant Microbe Interact, 2014, 27(12):1379-1389.
doi: 10.1094/MPMI-06-14-0190-R URL |
[50] |
Qiao YL, Shi JX, Zhai Y, et al. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection[J]. Proc Natl Acad Sci USA, 2015, 112(18):5850-5855.
doi: 10.1073/pnas.1421475112 URL |
[51] |
Zhang P, Jia YJ, Shi JX, et al. The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity[J]. New Phytol, 2019, 223(2):839-852.
doi: 10.1111/nph.15836 pmid: 30963588 |
[52] | Li HY, Wang HN, Jing MF, et al. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility[J]. eLife, 2018, 7:e40039. |
[53] | Ye YH, Rape M. Building ubiquitin chains:E2 enzymes at work[J]. Nat Rev Mol Cell Biol, 2009, 10(11):755-764. |
[54] |
Zhou BJ, Zeng LR. Conventional and unconventional ubiquitination in plant immunity[J]. Mol Plant Pathol, 2017, 18(9):1313-1330.
doi: 10.1111/mpp.12521 pmid: 27925369 |
[55] | Lin YC, Hu QL, Zhou J, et al. Phytophthora sojae effector Avr1d functions as an E2 competitor and inhibits ubiquitination activity of GmPUB13 to facilitate infection[J]. Proc Natl Acad Sci USA, 2021, 118(10):e2018312118. |
[56] |
Yang B, Wang YY, Guo BD, et al. The Phytophthora sojae RXLR effector Avh238 destabilizes soybean Type2 GmACSs to suppress ethylene biosynthesis and promote infection[J]. New Phytol, 2019, 222(1):425-437.
doi: 10.1111/nph.15581 pmid: 30394556 |
[57] | 张美祥, 安玉艳, 刘廷利, 等. 在本氏烟中瞬时表达效应因子PsCRN127基因提高其对寄生疫霉的抗性[J]. 南京农业大学学报, 2015, 38(6):930-935. |
Zhang MX, An YY, Liu TL, et al. Transient expression of the PsCRN127 effector gene enhances Nicotiana benthamiana resistance to Phytophthora parasitica[J]. J Nanjing Agric Univ, 2015, 38(6):930-935. | |
[58] |
Rajput NA, Zhang MX, Shen DY, et al. Overexpression of a Phytophthora cytoplasmic CRN effector confers resistance to disease, salinity and drought in Nicotiana benthamiana[J]. Plant Cell Physiol, 2015, 56(12):2423-2435.
doi: 10.1093/pcp/pcv164 pmid: 26546319 |
[59] |
Deb D, Anderson RG, How-Yew-Kin T, et al. Conserved RxLR effectors from oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae suppress PAMP- and effector-triggered immunity in diverse plants[J]. Mol Plant Microbe Interact, 2018, 31(3):374-385.
doi: 10.1094/MPMI-07-17-0169-FI URL |
[60] |
Na R, Yu D, Qutob D, et al. Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d[J]. Mol Plant Microbe Interact, 2013, 26(8):969-976.
doi: 10.1094/MPMI-02-13-0036-R URL |
[61] |
Song TQ, Kale SD, Arredondo FD, et al. Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance[J]. Mol Plant Microbe Interact, 2013, 26(7):711-720.
doi: 10.1094/MPMI-12-12-0289-R URL |
[62] | Dong SM, Yu D, Cui LK, et al. Sequence variants of the Phytophthora sojae RXLR effector Avr3a/5 are differentially recognized by Rps3a and Rps5 in soybean[J]. PLoS One, 2011, 6(7):e20172. |
[63] |
Dong SM, Qutob D, Tedman-Jones J, et al. The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains[J]. PLoS One, 2009, 4(5):e5556.
doi: 10.1371/journal.pone.0005556 URL |
[64] | Dou DL, Kale SD, Liu TL, et al. Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4and Rps6[J]. Mol Plant Microbe Interactions®, 2010, 23(4):425-435. |
[65] |
Dou DL, Kale SD, Wang XL, et al. Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b[J]. Plant Cell, 2008, 20(4):1118-1133.
doi: 10.1105/tpc.107.057067 URL |
[66] |
Liu TL, Ye WW, Ru YY, et al. Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses[J]. Plant Physiol, 2011, 155(1):490-501.
doi: 10.1104/pp.110.166470 URL |
[67] |
Bernard RL, Smith PE, Kaufmann MJ, et al. Inheritance of resistance to Phytophthora root and stem rot in the Soybean1[J]. Agron J, 1957, 49(7):391.
doi: 10.2134/agronj1957.00021962004900070016x URL |
[68] |
Mueller EH. Inheritance of resistance to four physiologic races of Phytophthora megasperma var. sojae[J]. Phytopathology, 1978, 68(9):1318-1322.
doi: 10.1094/Phyto-68-1318 URL |
[69] | Buzzell RI, Anderson TR. Research Notes:another major gene for resistance to Phytophthora megasperma var. sojae in soybeans[J]. Soybean Genet. Newsl, 1981, 8(1):30-33. |
[70] |
Buzzell RI, Anderson TR. Inheritance and race reaction of a new soybean Rps1 allele[J]. Plant Dis, 1992, 76(6):600-601.
doi: 10.1094/PD-76-0600 URL |
[71] |
Weng C, Yu K, Anderson TR, et al. Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7[J]. J Hered, 2001, 92(5):442-446.
pmid: 11773256 |
[72] | 范爱颖, 王晓鸣, 方小平, 等. 大豆品种豫豆25抗疫霉根腐病基因的鉴定[J]. 作物学报, 2009, 35(10):1844-1850. |
Fan AY, Wang XM, Fang XP, et al. Molecular identification of Phytophthora resistance gene in soybean cultivar Yudou 25[J]. Acta Agron Sin, 2009, 35(10):1844-1850.
doi: 10.3724/SP.J.1006.2009.01844 URL |
|
[73] |
Zhong C, Sun SL, Zhang XC, et al. Fine mapping, candidate gene identification and co-segregating marker development for the Phytophthora root rot resistance gene RpsYD25[J]. Front Genet, 2020, 11:799.
doi: 10.3389/fgene.2020.00799 pmid: 32849803 |
[74] |
Wu X, Zhou B, Zhao J, et al. Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean[J]. Plant Breed, 2011, 130(2):144-149.
doi: 10.1111/j.1439-0523.2010.01799.x URL |
[75] |
Sun S, Wu XL, Zhao JM, et al. Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae[J]. Plant Breed, 2011, 130(2):139-143.
doi: 10.1111/j.1439-0523.2010.01794.x URL |
[76] |
Zhang JQ, Xia CJ, Wang XM, et al. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar[J]. Theor Appl Genet, 2013, 126(6):1555-1561.
doi: 10.1007/s00122-013-2073-1 URL |
[77] |
Lin F, Zhao MX, Ping JQ, et al. Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean Landrace PI 567139B[J]. Theor Appl Genet, 2013, 126(8):2177-2185.
doi: 10.1007/s00122-013-2127-4 URL |
[78] | 郭娜, 胡冠军, 赵晋铭, 等. 一对单显性大豆抗疫霉根腐病基因的遗传分析及定位[J]. 南京农业大学学报, 2015, 38(4):532-537. |
Guo N, Hu GJ, Zhao JM, et al. Genetic analysis and mapping of a single dominant Phytophthora sojae resistance gene in soybean[J]. J Nanjing Agric Univ, 2015, 38(4):532-537. | |
[79] | 张海鹏, 郭娜, 牛景萍, 等. 大豆品种郑97196对疫霉根腐病的抗性遗传分析及基因定位[J]. 大豆科学, 2016, 35(3):373-379. |
Zhang HP, Guo N, Niu JP, et al. Genetic analysis of resistance to Phytophthora sojae and mapping of resistance gene in soybean cultivar Zheng 97196[J]. Soybean Sci, 2016, 35(3):373-379. | |
[80] |
Li YP, Sun SL, Zhong C, et al. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean[J]. Theor Appl Genet, 2017, 130(6):1223-1233.
doi: 10.1007/s00122-017-2883-7 URL |
[81] |
Cheng YB, Ma QB, Ren HL, et al. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean(Glycine max L.)by high-throughput genome-wide sequencing[J]. Theor Appl Genet, 2017, 130(5):1041-1051.
doi: 10.1007/s00122-017-2869-5 URL |
[82] | Niu JP, Guo N, Sun JT, et al. Fine mapping of a resistance gene RpsHN that controls Phytophthora sojae using recombinant inbred lines and secondary populations[J]. Front Plant Sci, 2017, 8:538. |
[83] |
Zhong C, Sun SL, Li YP, et al. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean[J]. Theor Appl Genet, 2018, 131(3):525-538.
doi: 10.1007/s00122-017-3016-z pmid: 29138903 |
[84] |
Zhong C, Li YP, Sun SL, et al. Genetic mapping and molecular characterization of a broad-spectrum Phytophthora sojae resistance gene in Chinese soybean[J]. Int J Mol Sci, 2019, 20(8):1809.
doi: 10.3390/ijms20081809 URL |
[85] |
Jiang BZ, Cheng YB, Cai ZD, et al. Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing[J]. BMC Genomics, 2020, 21(1):280.
doi: 10.1186/s12864-020-6668-z URL |
[86] |
Chen LY, Wang WD, Ping JQ, et al. Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean[J]. Theor Appl Genet, 2021, 134(12):3863-3872.
doi: 10.1007/s00122-021-03933-9 URL |
[87] | 陈亚光, 昝凯, 徐淑霞, 等. 大豆品种安豆1498对大豆疫霉菌株PsJS2的抗性遗传分析及基因定位[J]. 大豆科学, 2021, 40(5):628-632. |
Chen YG, Zan K, Xu SX, et al. Genetic analysis of resistance to Phytophthora sojae PsJS2 and mapping of resistance gene in soybean cultivar andou 1498[J]. Soybean Sci, 2021, 40(5):628-632. | |
[88] |
Ploper LD. A new allele at the Rps3 locus for resistance to Phytophthora megasperma f. sp. glycinea in soybean[J]. Phytopathology, 1985, 75(6):690-694.
doi: 10.1094/Phyto-75-690 URL |
[89] | 于安亮, 徐鹏飞, 王金生, 等. 大豆品种绥农10抗疫霉根腐病遗传分析及抗病基因的SSR标记[J]. 中国油料作物学报, 2010, 32(4):462-466. |
Yu AL, Xu PF, Wang JS, et al. Genetic analysis and SSR mapping of gene resistance to Phytophthora sojae race 1 in soybean cv Suinong 10[J]. Chin J Oil Crop Sci, 2010, 32(4):462-466. | |
[90] |
Gordon SG, St Martin SK, Dorrance AE. Rps8 maps to a resistance gene rich region on soybean molecular linkage group F[J]. Crop Sci, 2006, 46(1):168-173.
doi: 10.2135/cropsci2004.04-0024 URL |
[91] |
Kilen TC, Hartwig EE, Keeling BL. Inheritance of a second major gene for resistance to Phytophthora rot in Soybeans1[J]. Crop Sci, 1974, 14(2):260-262.
doi: 10.2135/cropsci1974.0011183X001400020027x URL |
[92] |
Athow KL, Laviolette FA, Mueller EH, et al. A new major gene for resistance to Phytophthora megasperma var. sojae in soybean[J]. Phytopathology, 1980, 70(10):977-980.
doi: 10.1094/Phyto-70-977 URL |
[93] |
Athow KL, Laviolette FA. Rps6, a major gene for resistance to Phy-tophthora megasperma f. sp. glycinea in soybean[J]. Phytopathology, 1982, 72(12):1564-1567.
doi: 10.1094/Phyto-72-1564 URL |
[94] | Sahoo DK, Abeysekara NS, Cianzio SR, et al. A novel Phytophthora sojae resistance Rps12 gene mapped to a genomic region that contains several Rps genes[J]. PLoS One, 2017, 12(1):e0169950. |
[95] |
Sun JT, Li LH, Zhao JM, et al. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean[Glycine max(L.)Merr. ][J]. Theor Appl Genet, 2014, 127(4):913-919.
doi: 10.1007/s00122-014-2266-2 URL |
[96] |
Zhong C, Sun SL, Yao LL, et al. Fine mapping and identification of a novel Phytophthora root rot resistance locus RpsZS18 on chromosome 2 in soybean[J]. Front Plant Sci, 2018, 9:44.
doi: 10.3389/fpls.2018.00044 pmid: 29441079 |
[97] |
Sahoo DK, Das A, Huang XQ, et al. Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistance in soybean[J]. Sci Rep, 2021, 11(1):16907.
doi: 10.1038/s41598-021-96425-1 URL |
[98] | 朱振东, 霍云龙, 王晓鸣, 等. 一个抗大豆疫霉根腐病新基因的分子鉴定[J]. 作物学报, 2007, 33(1):154-157. |
Zhu ZD, Huo YL, Wang XM, et al. Molecular identification of a novel Phytophthora resistance gene in soybean[J]. Acta Agron Sin, 2007, 33(1):154-157. | |
[99] | 姚海燕, 王晓鸣, 武小菲, 等. 大豆品种早熟18抗疫霉根腐病基因的SSR分子标记[J]. 植物遗传资源学报, 2010, 11(2):213-217. |
Yao HY, Wang XM, Wu XF, et al. Molecular mapping of Phytophthora resistance gene in soybean cultivar Zaoshu 18[J]. J Plant Genet Resour, 2010, 11(2):213-217. | |
[100] | 武晓玲, 周斌, 孙石, 等. 大豆对大豆疫霉菌株Pm14抗性的遗传分析及基因定位[J]. 中国农业科学, 2011, 44(3):456-460. |
Wu XL, Zhou B, Sun S, et al. Genetic analysis and mapping of resistance to Phytophthora sojae of Pm14 in soybean[J]. Sci Agric Sin, 2011, 44(3):456-460. | |
[101] | Zhang JQ, Xia CJ, Duan CX, et al. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar[J]. PLoS One, 2013, 8(7):e69799. |
[102] |
Ping JQ, Fitzgerald JC, Zhang CB, et al. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean[J]. Theor Appl Genet, 2016, 129(2):445-451.
doi: 10.1007/s00122-015-2638-2 URL |
[103] | 隋喆, 黄静, 马振川, 等. 吉林、辽宁大豆品种(系)对大豆疫病的抗病基因鉴定[J]. 中国油料作物学报, 2010, 32(1):94-98. |
Sui Z, Huang J, Ma ZC, et al. Evaluation of resistant genes to Phytophthora root and stem rot in soybean from Jilin and Liaoning provinces[J]. Chin J Oil Crop Sci, 2010, 32(1):94-98. | |
[104] | 陈晓玲, 朱振东, 王晓鸣, 等. 大豆品种(系)抗疫霉根腐病基因推导[J]. 中国农业科学, 2008, 41(4):1227-1234. |
Chen XL, Zhu ZD, Wang XM, et al. Postulation of Phytophthora resistance genes in soybean cultivars or lines[J]. Sci Agric Sin, 2008, 41(4):1227-1234. | |
[105] | 孙石. 大豆疫霉根腐病抗性的遗传分析及基因定位的初步研究[D]. 南京: 南京农业大学, 2008. |
Sun S. Primary study on genetic analysis and gene mapping of resistance to Phytophthora sojae in soybean[D]. Nanjing: Nanjing Agricultural University, 2008. | |
[106] |
李晓那, 孙石, 钟超, 等. 黄淮海地区大豆主栽品种对8个大豆疫霉菌株的抗性评价[J]. 作物学报, 2017, 43(12):1774-1783.
doi: 10.3724/SP.J.1006.2017.01774 |
Li XN, Sun S, Zhong C, et al. Resistance evaluation to eight Phytophthora sojae isolates for major soybean cultivars in Huang-Huai-Hai rivers valley[J]. Acta Agron Sin, 2017, 43(12):1774-1783.
doi: 10.3724/SP.J.1006.2017.01774 URL |
|
[107] | 张志民, 陈亚光, 周青, 等. 安豆1498——疫霉根腐病抗性新种质[J]. 中国油料作物学报, 2017, 39(6):855-860. |
Zhang ZM, Chen YG, Zhou Q, et al. Resistance identification of a new soybean germplasm Andou1498 to Phytophthora root rot[J]. Chin J Oil Crop Sci, 2017, 39(6):855-860. |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | ZHOU Zhen-chao, ZHENG Ji, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. High-throughput Profiling and Analysis of Shared Antibiotic Resistance Genes in Human Feces, Skin and Water Environments [J]. Biotechnology Bulletin, 2023, 39(7): 288-297. |
[3] | CHEN Bao-qiang, LI Ying-ying, MA Bo-ya, ROUZHAGULI Malike, YOULITUZI Naibi, SONG Jin-di, LIU Jun, WANG Xi-dong. Functional Analysis of the Type III Secreted Effector Gene aop2 in Acidovorax citrulli [J]. Biotechnology Bulletin, 2023, 39(6): 286-297. |
[4] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[5] | HU Li-li, LIN Bo-rong, WANG Hong-hong, CHEN Jian-song, LIAO Jin-ling, ZHUO Kan. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus [J]. Biotechnology Bulletin, 2023, 39(3): 254-266. |
[6] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[7] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[8] | LI Jia-le, LIN Sheng-hao, XU Wen-tao. Construction of an Ultra-sensitive Colorimetric Biosensor for Insect Resistance Genes Based on Loop-mediated Isothermal Amplification [J]. Biotechnology Bulletin, 2022, 38(8): 69-76. |
[9] | JIANG Yan-ke, LU Chong-chong, YIN Zi-yi, LI Yang, DING Xin-hua. Research Progress in Alternative Splicing in Plant Immunity [J]. Biotechnology Bulletin, 2022, 38(1): 215-227. |
[10] | JIANG Yu-qi, SHU Xin-yue, ZHENG Ai-ping, WANG Ai-jun. Recent Progress in Molecular Mechanism of Interaction Between Rice and Tilletia horrida [J]. Biotechnology Bulletin, 2021, 37(9): 248-254. |
[11] | DENG Miao-miao, GUO Xiao-li. Research Progress on Plants Responses to Parasitic Nematodes Infection [J]. Biotechnology Bulletin, 2021, 37(7): 25-34. |
[12] | PENG Huan, ZHAO Wei, YAO Ke, JIANG Chen, HUANG Wen-kun, KONG Ling-an, ZHENG Jing-wu, PENG De-liang. Research Progress on the Genomics of Plant-Parasitic Nematode [J]. Biotechnology Bulletin, 2021, 37(7): 3-13. |
[13] | MA Tao, LU Wei, LI Song-li, FAN Xia. Research Advance in the Resistome in the Microbiome of Livestock Animals [J]. Biotechnology Bulletin, 2021, 37(1): 113-122. |
[14] | ZHAI Nan-xin, CHI Hui, XIA Yue-lin, LIU Cai-yue, PEI Xin-wu, YUAN Qian-hua. Transcriptome Analysis of Drought-resistant Genes in Hainan Shanlan Upland Rice [J]. Biotechnology Bulletin, 2020, 36(12): 12-20. |
[15] | MAO Ran-ran, LI Xiao-yan, WU Yao, ZHANG Li-shan, LIN Zhen-ping, LIN Xiang-min. Cloning and Expression of Outer Membrane Protein OprM from Aeromonas hydrophila and the Evaluation of Its Immunoprotective Effect [J]. Biotechnology Bulletin, 2019, 35(9): 244-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||