Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (11): 140-150.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0091
Previous Articles Next Articles
FU Yong-yao1(), YI De-yan1, YANG Xian-mao1, CAI Li1, LIANG Yu-hua1, LEI Mei-yan2(), YANG Li-ping1()
Received:
2022-01-19
Online:
2022-11-26
Published:
2022-12-01
Contact:
LEI Mei-yan,YANG Li-ping
E-mail:34331107@qq.com;leimeiyan1985@126.com;yangliping1962@126.com
FU Yong-yao, YI De-yan, YANG Xian-mao, CAI Li, LIANG Yu-hua, LEI Mei-yan, YANG Li-ping. Analysis of Morphological Characteristics and Genetic Variation in a New Germplasm Lilium lancifolium JD-h-15[J]. Biotechnology Bulletin, 2022, 38(11): 140-150.
Fig. 1 Chromosome test analysis of JD-h-15 A,B:Analysis of the chromosome ploidy by flow cytometry,A is L. lancifolium,B is JD-h-15. C,D:Chromosome tableting using by root tips,C is L. lancifolium,and D is JD-h-15
Fig. 2 Plant morphology comparing between JD-h-15 and L. lancifolium A:L. lancifolium plants;B:JD-h-15 plants;C:L. lancifolium flowers;D:JD-h-15 flowers;E-F:JD-h-15 fruit enlargement after pollination;G-H:different sizes of JD-h-15 embryoless seeds;scales represent 25 cm(A,B),1.5 cm(C,D)and 1 cm(E,H)
性状 Traits | JD-h-15 | 卷丹L. lancifolium |
---|---|---|
株高Height/cm | 123.89±2.56** | 89.48±1.23 |
茎粗Stem diameter/cm | 0.74±0.02 | 0.82±0.02** |
单株叶片数 Leaf number per plant/cm | 90.76±2.92 | 112.96±1.68** |
叶间距Leaf interval/cm | 1.39±0.03** | 0.79±0.01 |
叶长Leaf length/cm | 13.92±0.18** | 10.83±0.09 |
叶宽Leaf width/cm | 1.47±0.02** | 1.16±0.01 |
叶长宽比Leaf length-width ratio | 9.68±0.21 | 9.49±0.12 |
叶面积Leaf area/cm2 | 16.08±0.34** | 9.80±0.12 |
单株叶片总面积Total leaf area per plant/cm2 | 1 465.80±68.09** | 1 111.54±28.43 |
花径Flower diameter/mm | 88.37±1.02 | 91.27±1.38 |
内轮花被片长Inner tepal length/cm | 9.98±0.05 | 9.93±0.10 |
内轮花被片宽Inner tepal width/cm | 2.63±0.03** | 2.52±0.03 |
外轮花被片长Outer tepal length/cm | 9.31±0.36 | 9.82±0.08 |
外轮花被片宽Outer tepal width/cm | 1.82±0.03 | 1.71±0.05 |
花丝长Filament length/cm | 7.31±0.05 | 7.18±0.05 |
花药长Anther length/cm | 2.07±0.09 | 1.93±0.08 |
单个果实种子数 Number of seeds per individual fruit | 236.64±5.34 | 0 |
单个果实正常大小种子数 Number of seeds in normal size per individual fruit | 66.96±5.28 | 0 |
果实长Capsule length/cm | 1.11±0.04 | 0 |
果实直径Capsule diameter/cm | 2.83±0.06 | 0 |
鳞茎重量Bulb weight/g | 54.99±5.98 | 61.17±6.71 |
鳞茎周径Bulb perimeter/cm | 16.49±0.65 | 18.06±0.85 |
鳞茎最大直径Bulb max diameter/cm | 5.50±0.21 | 6.23±0.29 |
珠芽重量Bulbil weight/g | 0.54±0.02 | 0.55±0.02 |
珠芽最大直径Bulbil max diameter/cm | 1.12±0.02 | 1.16±0.02 |
Table 1 Main morphological characteristics of JD-h-15 and L. lancifolium
性状 Traits | JD-h-15 | 卷丹L. lancifolium |
---|---|---|
株高Height/cm | 123.89±2.56** | 89.48±1.23 |
茎粗Stem diameter/cm | 0.74±0.02 | 0.82±0.02** |
单株叶片数 Leaf number per plant/cm | 90.76±2.92 | 112.96±1.68** |
叶间距Leaf interval/cm | 1.39±0.03** | 0.79±0.01 |
叶长Leaf length/cm | 13.92±0.18** | 10.83±0.09 |
叶宽Leaf width/cm | 1.47±0.02** | 1.16±0.01 |
叶长宽比Leaf length-width ratio | 9.68±0.21 | 9.49±0.12 |
叶面积Leaf area/cm2 | 16.08±0.34** | 9.80±0.12 |
单株叶片总面积Total leaf area per plant/cm2 | 1 465.80±68.09** | 1 111.54±28.43 |
花径Flower diameter/mm | 88.37±1.02 | 91.27±1.38 |
内轮花被片长Inner tepal length/cm | 9.98±0.05 | 9.93±0.10 |
内轮花被片宽Inner tepal width/cm | 2.63±0.03** | 2.52±0.03 |
外轮花被片长Outer tepal length/cm | 9.31±0.36 | 9.82±0.08 |
外轮花被片宽Outer tepal width/cm | 1.82±0.03 | 1.71±0.05 |
花丝长Filament length/cm | 7.31±0.05 | 7.18±0.05 |
花药长Anther length/cm | 2.07±0.09 | 1.93±0.08 |
单个果实种子数 Number of seeds per individual fruit | 236.64±5.34 | 0 |
单个果实正常大小种子数 Number of seeds in normal size per individual fruit | 66.96±5.28 | 0 |
果实长Capsule length/cm | 1.11±0.04 | 0 |
果实直径Capsule diameter/cm | 2.83±0.06 | 0 |
鳞茎重量Bulb weight/g | 54.99±5.98 | 61.17±6.71 |
鳞茎周径Bulb perimeter/cm | 16.49±0.65 | 18.06±0.85 |
鳞茎最大直径Bulb max diameter/cm | 5.50±0.21 | 6.23±0.29 |
珠芽重量Bulbil weight/g | 0.54±0.02 | 0.55±0.02 |
珠芽最大直径Bulbil max diameter/cm | 1.12±0.02 | 1.16±0.02 |
Fig. 3 Comparison of the bulb traits between JD-h-15 and L. lancifolium A:L. lancifolium bulbs;B:JD-h-15 bulbs;C:L. lancifolium inner,middle and outer scales from up to down;and D:JD-h-15 inner,middle and outer scales from up to down. Scales represent 6 cm(A,B)and 2 cm(C,D)
Fig. 4 Analysis on the stigma acceptability of different periods A,B:Stigmas in 40-50 mm buds. C,D:Stigmas in 50-60 mm buds. E,F:Stigmas in 60-70 mm buds. G,H:Stigmas in 70-80 mm buds. I,J:Stigmas in the flowering days. A,C,E,G,I is L. lancifolium,and B,D,F,H,J is JD-h-15. Scales represent 1 mm
材料 Materials | 花苞40-50 mm Bud 40-50 mm | 花苞50-60 mm Bud 50-60 mm | 花苞60-70 mm Bud 60-70 mm | 花苞70 mm以上 Bud > 70 mm | 花开当天 Flowering day |
---|---|---|---|---|---|
JD-h-15 | + | + | + + + | + + + | + + + |
卷丹L. lancifolium | + | + + | + + + | + + + | + + + |
Table 2 Analysis on the stigma acceptability of different periods
材料 Materials | 花苞40-50 mm Bud 40-50 mm | 花苞50-60 mm Bud 50-60 mm | 花苞60-70 mm Bud 60-70 mm | 花苞70 mm以上 Bud > 70 mm | 花开当天 Flowering day |
---|---|---|---|---|---|
JD-h-15 | + | + | + + + | + + + | + + + |
卷丹L. lancifolium | + | + + | + + + | + + + | + + + |
Fig. 5 Comparison of the pollen activity and the projected area of pollen grain A,B:Staining of L. lancifolium and JD-h-15 pollens. C,D:Pollen tube germination in L. lancifolium and JD-h-15. E,F:Projection area of pollen grains in L. lancifolium and JD-h-15. Scales represent actual length 100 μm(A,B)and 200 μm(C,D)
性状 Traits | JD-h-15 | 卷丹L. lancifolium |
---|---|---|
花粉粒径Pollen grain diameter/μm | 66.23±0.39** | 61.23±0.39 |
花粉粒投影面积Projected area of a pollen grain /μm2 | 2 023.35±33.48** | 1 760.23±23.38 |
叶上表皮细胞长Length of leaf abaxial epidermis/μm | 557.97±20.03 | 565.25±19.55 |
叶上表皮细胞宽Width of leaf abaxial epidermis/μm | 73.56±1.27 | 70.92±1.35 |
叶上表皮细胞面积Area of leaf abaxial epidermis/μm2 | 40 646.72±1 382.35 | 39 513.50±1 274.04 |
保卫细胞长Guard cell length/μm | 104.64±1.00 | 104.38±1.12 |
保卫细胞宽Guard cell width/μm | 59.37±0.88 | 60.17±0.83 |
气孔长Stoma length/μm | 72.16±1.28* | 66.71±0.95 |
气孔宽 Stoma width/μm | 15.91±0.34 | 18.48±0.95** |
气孔密度Stoma density/(Stomas/mm2) | 38.93±1.38 | 36.96±1.28 |
鳞茎淀粉粒径Bulb starch grain diameter/μm | 23.42±0.50 | 26.98±0.48** |
珠芽淀粉粒径Bulbil starch grain diameter/μm | 17.61±0.54 | 23.00±0.52** |
鳞茎淀粉粒投影面积Projected area of bulb starch grain/μm2 | 371.63±12.45 | 428.01±14.00** |
珠芽淀粉粒投影面积Projected area of bulbil starch grain/μm2 | 167.46±5.48 | 289.54±14.02** |
Table 3 Morphological characteristics of pollen,leaf surface and starch grain in JD-h-15 and L. lancifolium
性状 Traits | JD-h-15 | 卷丹L. lancifolium |
---|---|---|
花粉粒径Pollen grain diameter/μm | 66.23±0.39** | 61.23±0.39 |
花粉粒投影面积Projected area of a pollen grain /μm2 | 2 023.35±33.48** | 1 760.23±23.38 |
叶上表皮细胞长Length of leaf abaxial epidermis/μm | 557.97±20.03 | 565.25±19.55 |
叶上表皮细胞宽Width of leaf abaxial epidermis/μm | 73.56±1.27 | 70.92±1.35 |
叶上表皮细胞面积Area of leaf abaxial epidermis/μm2 | 40 646.72±1 382.35 | 39 513.50±1 274.04 |
保卫细胞长Guard cell length/μm | 104.64±1.00 | 104.38±1.12 |
保卫细胞宽Guard cell width/μm | 59.37±0.88 | 60.17±0.83 |
气孔长Stoma length/μm | 72.16±1.28* | 66.71±0.95 |
气孔宽 Stoma width/μm | 15.91±0.34 | 18.48±0.95** |
气孔密度Stoma density/(Stomas/mm2) | 38.93±1.38 | 36.96±1.28 |
鳞茎淀粉粒径Bulb starch grain diameter/μm | 23.42±0.50 | 26.98±0.48** |
珠芽淀粉粒径Bulbil starch grain diameter/μm | 17.61±0.54 | 23.00±0.52** |
鳞茎淀粉粒投影面积Projected area of bulb starch grain/μm2 | 371.63±12.45 | 428.01±14.00** |
珠芽淀粉粒投影面积Projected area of bulbil starch grain/μm2 | 167.46±5.48 | 289.54±14.02** |
Fig. 6 Observation on upper epidermal cells and stomas A,C:L. lancifolium upper epidermal cells. B,D:JD-h-15 upper epidermal cells. E:L. lancifolium leaf blade stomas. F:JD-h-15 leaf blade stomas. Scales represent 200 μm
Fig. 7 Comparison on the morphology of starch grains in lily bulbils and bulbs A:Starch grain form in L. lancifolium bulbils. B:Starch grain form in JD-h-15 bulbils. C:Starch grain form in L. lancifolium bulbs. D:Starch grain form in JD-h-15 bulbs. Scales represent 100 μm
测试样品 Samples | 淀粉 Starch/% | 可溶性糖 Soluble sugar/% | 抗坏血酸 Ascorbate/% | 总黄酮 Total flavonoids/% | 总皂苷 Total saponins/% | 总酚 Total phenolic acids/% | 总生物碱 Total alkaloids/% |
---|---|---|---|---|---|---|---|
卷丹L. lancifolium | 28.805±0.007 | 1.310±0.001 | 0.070±0.001** | 0.114±0.007 | 0.455±0.005 | 0.106±0.007** | 0.613±0.004** |
JD-h-15 | 28.452±0.518 | 1.865±0.022** | 0.054±0.003 | 0.191±0.005** | 0.668±0.012** | 0.071±0.002 | 0.304±0.017 |
Table 4 Content of active components in JD-h-15 and L. lancifolium
测试样品 Samples | 淀粉 Starch/% | 可溶性糖 Soluble sugar/% | 抗坏血酸 Ascorbate/% | 总黄酮 Total flavonoids/% | 总皂苷 Total saponins/% | 总酚 Total phenolic acids/% | 总生物碱 Total alkaloids/% |
---|---|---|---|---|---|---|---|
卷丹L. lancifolium | 28.805±0.007 | 1.310±0.001 | 0.070±0.001** | 0.114±0.007 | 0.455±0.005 | 0.106±0.007** | 0.613±0.004** |
JD-h-15 | 28.452±0.518 | 1.865±0.022** | 0.054±0.003 | 0.191±0.005** | 0.668±0.012** | 0.071±0.002 | 0.304±0.017 |
Fig. 8 ISSR amplification of JD-h-15 and L. lancifolium A:Primer 3A30. B:Primer 3A62. C:Primer UBC814. D:Primer UBC815. E:Primer UBC835. F:Primer UBC843. G:Primer UBC844. H:Primer UBC845. I:Primer UBC857. J:Primer UBC880. 1-3 indicate three independent samples of L. lancifolium,4-6 indicate three independent samples of JD-h-15,M indicate Marker 2000
[1] | 汪发缵, 唐进. 中国植物志[M]. 北京: 科学出版社, 1980. |
Wang FZ, Tang J. Flora of China[M]. Beijing: Science Press, 1980. | |
[2] | 杨利平, 宋晓宏. 卷丹组培体系的构建[J]. 河北农业大学学报, 2013, 36(4):17-21, 30. |
Yang LP, Song XH. Tissue culture system construction of Lilium lancifolium Thunb[J]. J Agric Univ Hebei, 2013, 36(4):17-21, 30. | |
[3] | 赵祥云, 王文和. 我国百合产业的现状及存在问题和发展建议[M]// 明军, 袁素霞. 第12届中国球宿根花卉研讨会论文(摘要)集. 北京: 北京中绿园林科学研究院, 2017:61-69. |
Zhao XY, Wang WH. Status and development proposals of lily industry in China[M]// Ming J, Yuan SX. Papers(abstracts)of the 12th symposium of chinese society of flower bulbs. Beijing: Beijing Zhonglv Garden Science Research Institute, 2017:61-69. | |
[4] | 胡悦, 杜运鹏, 田翠杰, 等. 百合属植物化学成分及其生物活性的研究进展[J]. 食品科学, 2018, 39(15):323-332. |
Hu Y, Du YP, Tian CJ, et al. A review of chemical components and their bioactivities from the genus Lilium[J]. Food Sci, 2018, 39(15):323-332. | |
[5] | 国家药典委员会. 中华人民共和国药典-一部[M]. 北京: 中国医药科技出版社, 2020. |
Chinese Pharmacopoeia Commission. Pharmacopoeia of People's Republic of China- Part I[M]. Beijing: China Medical Science Press, 2020. | |
[6] |
胡兆东, 田硕, 苗艳艳, 等. 百合的现代化学、药理及临床应用研究进展[J]. 中药药理与临床, 2021, doi:10.13412/j.cnki.zyyl.20211015.001.
doi: 10.13412/j.cnki.zyyl.20211015.001 |
Hu ZD, Tian S, Miao Y, et al. Chemical composition, pharmacological research, and clinical application of baihe[J]. Pharmacology and Clinics of Chinese Materia Medica, 2021, doi:10.13412/j.cnki.zyyl.20211015.001.
doi: 10.13412/j.cnki.zyyl.20211015.001 |
|
[7] | 杨利平, 符勇耀. 中国百合资源利用研究[M]. 哈尔滨: 东北林业大学出版社, 2018. |
Yang LP, Fu YY. Research on resource utilization of lily in China[M]. Harbin: Northeast Forestry University, 2018. | |
[8] |
Bakhshaie M, Khosravi S, Azadi P, et al. Biotechnological advances in Lilium[J]. Plant Cell Rep, 2016, 35(9):1799-1826.
doi: 10.1007/s00299-016-2017-8 pmid: 27318470 |
[9] | 吴雪娟, 杨利平, 陈敏. 条叶百合的离体多倍体诱导[J]. 贵州农业科学, 2016, 44(8):84-86. |
Wu XJ, Yang LP, Chen M. In vitro polyploid induction of Lilium callosum[J]. Guizhou Agric Sci, 2016, 44(8):84-86. | |
[10] | 孙红梅, 付麟岚, 王志平, 等. 基于体细胞胚发生的细叶百合和兰州百合多倍体诱导及鉴定[J]. 园艺学报, 2018, 45(6):1136-1146. |
Sun HM, Fu LL, Wang ZP, et al. Polyploidy induction and identification of Lilium pumilum and Lilium davidii var. unicolor based on somatic embryogenesis[J]. Acta Hortic Sin, 2018, 45(6):1136-1146. | |
[11] | 李旦, 罗一然, 韩国伟, 等. 野生紫斑百合多倍体诱导研究[J]. 云南农业大学学报:自然科学, 2017, 32(4):678-684. |
Li D, Luo YR, Han GW, et al. Studies on polyploidy induction of wild Lilium nepalense D. don[J]. J Yunnan Agric Univ Nat Sci, 2017, 32(4):678-684. | |
[12] | 张锡庆, 汪莲娟, 曹钦政, 等. 有斑百合多倍体诱导及鉴定[J]. 北京林业大学学报, 2017, 39(7):96-102. |
Zhang XQ, Wang LJ, Cao QZ, et al. Polyploidy induction and identification in Lilium concolor var. pulchellum[J]. J Beijing For Univ, 2017, 39(7):96-102. | |
[13] | 唐彪, 杨利平, 侯菲. 不同种源卷丹染色体数目变异[J]. 东北林业大学学报, 2014, 42(11):158-160, 165. |
Tang B, Yang LP, Hou F. Chromosomal number variations in different sources of Lilium lancifolium thunb[J]. J Northeast For Univ, 2014, 42(11):158-160, 165. | |
[14] | 陈艾, 杨利平, 谭艳, 等. 秋水仙素诱变离体卷丹多倍体的研究[J]. 植物遗传资源学报, 2014, 15(6):1385-1389. |
Chen A, Yang LP, Tan Y, et al. Study on polyploid induction of Lilium lancifolium in vitro with colchicine treatment[J]. J Plant Genet Resour, 2014, 15(6):1385-1389. | |
[15] | 雷美艳, 杨利平, 杨天建, 等. 卷丹新品种‘渝百合1号’[J]. 园艺学报, 2020, 47(S2):3044-3045. |
Lei MY, Yang LP, Yang TJ, et al. A new Lilium cultivar ‘yu Baihe 1’[J]. Acta Hortic Sin, 2020, 47(S2):3044-3045. | |
[16] | 杨利平, 符勇耀, 范军好, 等. 龙牙百合3个地方品种的形态特征及核型分析[J]. 植物科学学报, 2019, 37(5):559-568. |
Yang LP, Fu YY, Fan JH, et al. Morphological characteristics and karyotype analysis of three local varieties of Lilium brownii var. viridulum[J]. Plant Sci J, 2019, 37(5):559-568. | |
[17] | 陈子琳, 吴泽, 张德花, 等. 南京地区盆栽百合引种适应性研究[J]. 南京农业大学学报, 2021, 44(1):78-88. |
Chen ZL, Wu Z, Zhang DH, et al. Study on the adaptability of potted lily introduction in Nanjing area[J]. J Nanjing Agric Univ, 2021, 44(1):78-88. | |
[18] | Fu YY, Liu FL, Qi XY, et al. Salt solution treatment plays an important role in overcoming pre-fertilization barriers during Asiatic and Oriental lily crossbreeding[J]. Sci Hortic, 2021, 288:110343. |
[19] | 张述伟, 宗营杰, 方春燕, 等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化[J]. 食品研究与开发, 2020, 41(7):196-200. |
Zhang SW, Zong YJ, Fang CY, et al. Optimization of anthrone colorimetric method for rapid determination of soluble sugar in barley leaves[J]. Food Res Dev, 2020, 41(7):196-200. | |
[20] | 李小梅, 章斌, 叶群丽. 紫外分光光度法测定野生酸枣中维生素C的含量[J]. 山西化工, 2018, 38(4):56-57, 92. |
Li XM, Zhang B, Ye QL. Determination of vitamin C in wild jujube by ultraviolet spectrophotometry[J]. Shanxi Chem Ind, 2018, 38(4):56-57, 92. | |
[21] | Tang YC, Liu YJ, He GR, et al. Comprehensive analysis of secondary metabolites in the extracts from different lily bulbs and their antioxidant ability[J]. Antioxidants(Basel), 2021, 10(10):1634. |
[22] | 罗方利, 郭力, 许莉, 等. 延龄草中总皂苷的含量测定[J]. 中药与临床, 2014, 5(2):24-25. |
Luo FL, Guo L, Xu L, et al. Content determination of total saponins in Trillium tschonoskii Maxim[J]. Pharm Clin Chin Mater Med, 2014, 5(2):24-25. | |
[23] | 杜萌, 刘璇, 丁安伟, 等. 酸性染料比色法测定百合中总生物碱的含量[J]. 江苏中医药, 2012, 44(1):62-63. |
Du M, Liu X, Ding AW, et al. Determination of total alkaloids in lily by acid dye colorimetry[J]. Jiangsu J Tradit Chin Med, 2012, 44(1):62-63. | |
[24] | 李懋学, 张杶方. 植物染色体研究技术[M]. 哈尔滨: 东北林业大学出版社, 1991. |
Li MX, Zhang CF. Research of plant chromosome technology[M]. Harbin: Northeast Forestry University Press, 1991. | |
[25] | 王丽艳, 荆瑞勇. 秋水仙碱诱导兰州百合四倍体[J]. 核农学报, 2008, 22(5):581-584. |
Wang LY, Jing RY. Tetraploid induction of Lilium davidii var. unicolor through colchicine treatment[J]. J Nucl Agric Sci, 2008, 22(5):581-584. | |
[26] | 吴青青, 胡小京, 崔嵬, 等. 秋水仙素诱导百合黄精灵多倍体研究[J]. 种子, 2019, 38(11):96-100. |
Wu QQ, Hu XJ, Cui W, et al. Study on polyploid induction of lily yelloween by colchicine[J]. Seed, 2019, 38(11):96-100. | |
[27] | 张震林, 郑梓唯, 郑思乡, 等. 异源三倍体百合的培育及鉴定[J]. 分子植物育种, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210907.1455.010.html. |
Zhang ZL, Zheng ZW, Zheng SX, et al. The cultivation and identification of allotriploid lily[J]. Mol Plant Breed, 2021. https://kns.cnki.net/kcms/detail/46.1068.S.20210907.1455.010.html. | |
[28] | 李正红, 孙振元, 彭镇华. 秋水仙素诱导地锦多倍体研究[J]. 核农学报, 2005, 19(6):430-435. |
Li ZH, Sun ZY, Peng ZH. Study on colchiploid of P. Tricuspidata induced by colchicines[J]. Acta Agric Nucleatae Sin, 2005, 19(6):430-435. | |
[29] | 陈敏敏, 周音, 孙亿敬, 等. 秋水仙素诱导百合多倍体及流式细胞仪倍性鉴定研究[J]. 上海农业学报, 2018, 34(2):81-87. |
Chen MM, Zhou Y, Sun YJ, et al. Polyploidy induction of Lilium spp. by colchicine and ploidy identification by flow cytometry[J]. Acta Agric Shanghai, 2018, 34(2):81-87. | |
[30] | 杨利平, 符勇耀, 雷美艳. 百合新品种‘美妞’[J]. 园艺学报, 2019, 46(9):1859-1860. |
Yang LP, Fu YY, Lei MY. A new Lilium cultivar ‘nice little girl’[J]. Acta Hortic Sin, 2019, 46(9):1859-1860. | |
[31] | 王海侠. 小议秋水仙素诱发变异的不同机制[J]. 生物学教学, 2008(8):79-80. |
Wang HX. Different mechanisms by which colchicine induces mutation[J]. Biol Teach, 2008(8):79-80. | |
[32] | 金术超, 张淼怡, 王薇. 秋水仙素的作用机制[J]. 生物学通报, 2016, 51(10):7-10. |
Jin SC, Zhang MY, Wang W. The action mechanism of colchicine[J]. Bull Biol, 2016, 51(10):7-10. | |
[33] | 李卓, 沈彬, 张竞秋. 秋水仙素诱导黑麦根尖细胞染色体的畸变效应[J]. 麦类作物学报, 2009, 29(1):44-48. |
Li Z, Shen B, Zhang JQ. Induction effects of colchicine on abnormal splitting of cell chromosome in root tip of rye[J]. J Triticeae Crops, 2009, 29(1):44-48. | |
[34] | 祝朋芳, 肖丽. 秋水仙素诱导菊花变异的研究[J]. 西北林学院学报, 2010, 25(3):80-83. |
Zhu PF, Xiao L. Colchicine induced mutation of Dendranthema morifolium[J]. J Northwest For Univ, 2010, 25(3):80-83. | |
[35] |
Liu Q, Weber E, Currie V, et al. Physicochemical properties of starches during potato growth[J]. Carbohydr Polym, 2003, 51(2):213-221.
doi: 10.1016/S0144-8617(02)00138-8 URL |
[36] | 胡悦, 杜运鹏, 张梦, 等. 12种百合主要营养成分和活性成分的分析评价[J]. 天然产物研究与开发, 2019, 31(2):292-298. |
Hu Y, Du YP, Zhang M, et al. Characters and comprehensive evaluation of nutrients and active components of 12 Lilium species[J]. Nat Prod Res Dev, 2019, 31(2):292-298. |
[1] | TANG Bo, SUN Zhao-lin, DAI Yun-ping. Research Progress of Gene Editing Technology on Cattle [J]. Biotechnology Bulletin, 2018, 34(5): 41-47. |
[2] | WANG Wei-lan CHEN Kai-xu LIU Jun DUAN Wei-wei XU Ya-nan ZHANG Fu-chun. Antitumor Activity of the Ethanol Extract of Pleurotus ferulae and the Extraction Procedure of Triterpenoid Components [J]. Biotechnology Bulletin, 2016, 32(7): 206-216. |
[3] | Jin Song Zhou Xuan Li Zhenghong Li Jilin Zhang Yanming. Molecular Cytogenetic Identification of Perennial Wheat Hybrid at the Fifth Generation [J]. Biotechnology Bulletin, 2014, 0(3): 65-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||