Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 184-193.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0404
Previous Articles Next Articles
ZHANG Ye-meng1,2,3(), ZHU Li-li1,2,3, CHEN Zhi-guo2,3()
Received:
2022-03-31
Online:
2022-12-26
Published:
2022-12-29
Contact:
CHEN Zhi-guo
E-mail:zhangyemeng@nwipb.cas.cn;zgchen@nwipb.cas.cn
ZHANG Ye-meng, ZHU Li-li, CHEN Zhi-guo. Identification and Expression Analysis of NHX Gene Family in Quinoa Under Salt Stress[J]. Biotechnology Bulletin, 2022, 38(12): 184-193.
基因Gene | 上游引物Forward primer(5'-3') | 下游引物Reverse primer(5'-3') |
---|---|---|
AUR62041754 | ATGGAGGAGGGGAAGGGA | TTAAGAGGTACCCTTTTTTTCCT |
AUR62027477 | ATGTTCGATCGTGCTTTGGAG | TCATGAATCATGAGACCCCCCTT |
AUR62043892 | ATGGACCTTTCTGTGGTTGGC | CTAGTAACAAGCCCAAGGAAC |
AUR62017691 | ATGGAGGATCAGCAGATTTCTCC | TCAGTTACGAGTACTGTAGACTT |
ACT1[ | GTCCACAGGTGCTTCTAAG | AACAACTCCTCACCTTCTCATG |
Table 1 RT-qPCR primers of NHXs in quinoa
基因Gene | 上游引物Forward primer(5'-3') | 下游引物Reverse primer(5'-3') |
---|---|---|
AUR62041754 | ATGGAGGAGGGGAAGGGA | TTAAGAGGTACCCTTTTTTTCCT |
AUR62027477 | ATGTTCGATCGTGCTTTGGAG | TCATGAATCATGAGACCCCCCTT |
AUR62043892 | ATGGACCTTTCTGTGGTTGGC | CTAGTAACAAGCCCAAGGAAC |
AUR62017691 | ATGGAGGATCAGCAGATTTCTCC | TCAGTTACGAGTACTGTAGACTT |
ACT1[ | GTCCACAGGTGCTTCTAAG | AACAACTCCTCACCTTCTCATG |
基因 ID Gene ID | 氨基酸 Number of amino acids/aa | 分子质量 Molecular weight/Da | 等电点 pI | 亲水性 Gravy | 不稳定指数 Instability index | 亚细胞预测 Predicted location |
---|---|---|---|---|---|---|
AUR62017691 | 514 | 57 092.24 | 5.38 | 0.439 | 50.73 | 液泡Vacuole |
AUR62044447 | 618 | 69 784.72 | 5.54 | 0.373 | 32.07 | 细胞膜、液泡Cell membrane,vacuole |
AUR62023671 | 510 | 55 482.83 | 7.06 | 0.747 | 26.34 | 细胞膜、液泡Cell membrane,vacuole |
AUR62022028 | 618 | 69 784.72 | 5.54 | 0.373 | 32.07 | 细胞膜、液泡Cell membrane,vacuole |
AUR62020843- | 517 | 58 012.47 | 8.38 | 0.460 | 32.20 | 细胞膜、液泡Cell membrane,vacuole |
AUR62017877 | 109 | 11 472.74 | 6.74 | 1.112 | 21.71 | 细胞膜、液泡Cell membrane,vacuole |
AUR62021694 | 665 | 74 913.30 | 6.68 | 0.403 | 30.77 | 液泡 Vacuole |
AUR62019781 | 804 | 86 860.99 | 8.88 | 0.360 | 40.84 | 细胞膜、液泡Cell membrane,vacuole |
AUR62021703 | 607 | 68 131.50 | 5.57 | 0.432 | 47.58 | 液泡 Vacuole |
AUR62008394 | 598 | 66 617.46 | 5.97 | 0.352 | 33.74 | 液泡 Vacuole |
AUR62021702 | 576 | 64 055.50 | 5.94 | 0.387 | 35.34 | 液泡 Vacuole |
AUR62022953 | 713 | 79 785.44 | 8.69 | 0.291 | 34.83 | 液泡 Vacuole |
AUR62009662 | 684 | 75 352.40 | 6.43 | 0.385 | 37.95 | 细胞膜、液泡Cell membrane,vacuole |
AUR62004319 | 1 227 | 131 988.87 | 5.08 | 0.050 | 41.71 | 细胞核 Nucleus |
AUR62027477 | 486 | 52 731.20 | 7.08 | 0.696 | 32.95 | 细胞膜、液泡Cell membrane,vacuole |
AUR62019779 | 801 | 86 091.87 | 8.44 | 0.360 | 36.40 | 细胞膜、液泡Cell membrane,vacuole |
AUR62043892 | 676 | 76 288.29 | 7.91 | 0.300 | 32.05 | 细胞膜、液泡Cell membrane,vacuole |
AUR62008393 | 607 | 67 909.32 | 5.65 | 0.440 | 47.78 | 液泡 Vacuole |
AUR62009709 | 867 | 96 471.46 | 9.23 | 0.297 | 46.97 | 细胞膜、液泡Cell membrane,vacuole |
AUR62033334 | 1 214 | 130 455.31 | 5.09 | 0.084 | 39.66 | 细胞核 Nucleus |
AUR62041754 | 349 | 36 309.11 | 8.89 | 0.781 | 25.43 | 细胞膜、液泡Cell membrane,vacuole |
AUR62033325 | 1 181 | 126 888.57 | 5.16 | 0.113 | 39.66 | 细胞核 Nucleus |
AUR62001874 | 429 | 47 260.98 | 6.45 | 0.636 | 33.44 | 细胞膜、液泡Cell membrane,vacuole |
AUR62001864 | 753 | 83 016.74 | 7.88 | 0.396 | 38.15 | 细胞膜、液泡Cell membrane,vacuole |
AUR62009707 | 704 | 79 132.21 | 8.20 | 0.242 | 41.03 | 细胞膜、液泡Cell membrane,vacuole |
AUR62000934 | 551 | 60 928.18 | 6.49 | 0.534 | 34.53 | 液泡 Vacuole |
AUR62027069 | 791 | 85 976.49 | 5.20 | 0.320 | 34.07 | 细胞膜、液泡Cell membrane,vacuole |
AUR62019780 | 801 | 86 024.90 | 8.13 | 0.387 | 40.33 | 细胞膜、液泡Cell membrane,vacuole |
AUR62036238 | 759 | 85 128.10 | 8.39 | 0.229 | 38.77 | 液泡 Vacuole |
AUR62018573 | 779 | 86 152.60 | 8.41 | 0.299 | 31.27 | 细胞膜、液泡Cell membrane,vacuole |
AUR62026204 | 778 | 86 638.91 | 7.90 | 0.174 | 38.40 | 液泡 Vacuole |
AUR62009395 | 1 646 | 182 928.70 | 8.87 | -0.226 | 39.57 | 液泡 Vacuole |
AUR62008401 | 665 | 74 930.13 | 6.52 | 0.407 | 31.41 | 液泡 Vacuole |
AUR62009673 | 1 820 | 204 381.58 | 6.58 | 0.332 | 37.00 | 细胞膜、液泡Cell membrane,vacuole |
AUR62001875 | 1 340 | 150 822.00 | 6.78 | 0.353 | 33.17 | 细胞膜、液泡Cell membrane,vacuole |
AUR62001876 | 674 | 75 685.34 | 5.54 | 0.340 | 39.06 | 细胞膜、液泡Cell membrane,vacuole |
AUR62022963 | 492 | 53 620.84 | 9.00 | 0.703 | 40.62 | 细胞膜、液泡Cell membrane,vacuole |
AUR62000862 | 544 | 60 147.10 | 6.08 | 0.470 | 32.40 | 液泡 Vacuole |
AUR62021295 | 548 | 59 615.20 | 5.58 | 0.675 | 25.39 | 细胞膜、液泡Cell membrane,vacuole |
AUR62030239 | 527 | 59 096.47 | 5.00 | 0.185 | 42.68 | 液泡 Vacuole |
AUR62003573 | 797 | 86 437.67 | 6.33 | 0.318 | 38.20 | 细胞膜、液泡Cell membrane,vacuole |
AUR62036236 | 844 | 93 703.46 | 9.27 | 0.309 | 48.18 | 细胞膜、液泡Cell membrane,vacuole |
AUR62003491 | 1 211 | 133 817.30 | 6.26 | 0.088 | 35.14 | 细胞膜 Cell membrane |
AUR62009672 | 648 | 71 771.52 | 5.28 | 0.331 | 33.94 | 细胞膜、液泡Cell membrane,vacuole |
AUR62026390 | 759 | 84 042.11 | 6.83 | 0.273 | 37.52 | 细胞膜、液泡Cell membrane,vacuole |
AUR62033999 | 491 | 53 035.55 | 7.08 | 0.709 | 31.97 | 细胞膜、液泡Cell membrane,vacuole |
Table 2 Physicochemical properties and subcellular localizations of quinoa NHXs proteins
基因 ID Gene ID | 氨基酸 Number of amino acids/aa | 分子质量 Molecular weight/Da | 等电点 pI | 亲水性 Gravy | 不稳定指数 Instability index | 亚细胞预测 Predicted location |
---|---|---|---|---|---|---|
AUR62017691 | 514 | 57 092.24 | 5.38 | 0.439 | 50.73 | 液泡Vacuole |
AUR62044447 | 618 | 69 784.72 | 5.54 | 0.373 | 32.07 | 细胞膜、液泡Cell membrane,vacuole |
AUR62023671 | 510 | 55 482.83 | 7.06 | 0.747 | 26.34 | 细胞膜、液泡Cell membrane,vacuole |
AUR62022028 | 618 | 69 784.72 | 5.54 | 0.373 | 32.07 | 细胞膜、液泡Cell membrane,vacuole |
AUR62020843- | 517 | 58 012.47 | 8.38 | 0.460 | 32.20 | 细胞膜、液泡Cell membrane,vacuole |
AUR62017877 | 109 | 11 472.74 | 6.74 | 1.112 | 21.71 | 细胞膜、液泡Cell membrane,vacuole |
AUR62021694 | 665 | 74 913.30 | 6.68 | 0.403 | 30.77 | 液泡 Vacuole |
AUR62019781 | 804 | 86 860.99 | 8.88 | 0.360 | 40.84 | 细胞膜、液泡Cell membrane,vacuole |
AUR62021703 | 607 | 68 131.50 | 5.57 | 0.432 | 47.58 | 液泡 Vacuole |
AUR62008394 | 598 | 66 617.46 | 5.97 | 0.352 | 33.74 | 液泡 Vacuole |
AUR62021702 | 576 | 64 055.50 | 5.94 | 0.387 | 35.34 | 液泡 Vacuole |
AUR62022953 | 713 | 79 785.44 | 8.69 | 0.291 | 34.83 | 液泡 Vacuole |
AUR62009662 | 684 | 75 352.40 | 6.43 | 0.385 | 37.95 | 细胞膜、液泡Cell membrane,vacuole |
AUR62004319 | 1 227 | 131 988.87 | 5.08 | 0.050 | 41.71 | 细胞核 Nucleus |
AUR62027477 | 486 | 52 731.20 | 7.08 | 0.696 | 32.95 | 细胞膜、液泡Cell membrane,vacuole |
AUR62019779 | 801 | 86 091.87 | 8.44 | 0.360 | 36.40 | 细胞膜、液泡Cell membrane,vacuole |
AUR62043892 | 676 | 76 288.29 | 7.91 | 0.300 | 32.05 | 细胞膜、液泡Cell membrane,vacuole |
AUR62008393 | 607 | 67 909.32 | 5.65 | 0.440 | 47.78 | 液泡 Vacuole |
AUR62009709 | 867 | 96 471.46 | 9.23 | 0.297 | 46.97 | 细胞膜、液泡Cell membrane,vacuole |
AUR62033334 | 1 214 | 130 455.31 | 5.09 | 0.084 | 39.66 | 细胞核 Nucleus |
AUR62041754 | 349 | 36 309.11 | 8.89 | 0.781 | 25.43 | 细胞膜、液泡Cell membrane,vacuole |
AUR62033325 | 1 181 | 126 888.57 | 5.16 | 0.113 | 39.66 | 细胞核 Nucleus |
AUR62001874 | 429 | 47 260.98 | 6.45 | 0.636 | 33.44 | 细胞膜、液泡Cell membrane,vacuole |
AUR62001864 | 753 | 83 016.74 | 7.88 | 0.396 | 38.15 | 细胞膜、液泡Cell membrane,vacuole |
AUR62009707 | 704 | 79 132.21 | 8.20 | 0.242 | 41.03 | 细胞膜、液泡Cell membrane,vacuole |
AUR62000934 | 551 | 60 928.18 | 6.49 | 0.534 | 34.53 | 液泡 Vacuole |
AUR62027069 | 791 | 85 976.49 | 5.20 | 0.320 | 34.07 | 细胞膜、液泡Cell membrane,vacuole |
AUR62019780 | 801 | 86 024.90 | 8.13 | 0.387 | 40.33 | 细胞膜、液泡Cell membrane,vacuole |
AUR62036238 | 759 | 85 128.10 | 8.39 | 0.229 | 38.77 | 液泡 Vacuole |
AUR62018573 | 779 | 86 152.60 | 8.41 | 0.299 | 31.27 | 细胞膜、液泡Cell membrane,vacuole |
AUR62026204 | 778 | 86 638.91 | 7.90 | 0.174 | 38.40 | 液泡 Vacuole |
AUR62009395 | 1 646 | 182 928.70 | 8.87 | -0.226 | 39.57 | 液泡 Vacuole |
AUR62008401 | 665 | 74 930.13 | 6.52 | 0.407 | 31.41 | 液泡 Vacuole |
AUR62009673 | 1 820 | 204 381.58 | 6.58 | 0.332 | 37.00 | 细胞膜、液泡Cell membrane,vacuole |
AUR62001875 | 1 340 | 150 822.00 | 6.78 | 0.353 | 33.17 | 细胞膜、液泡Cell membrane,vacuole |
AUR62001876 | 674 | 75 685.34 | 5.54 | 0.340 | 39.06 | 细胞膜、液泡Cell membrane,vacuole |
AUR62022963 | 492 | 53 620.84 | 9.00 | 0.703 | 40.62 | 细胞膜、液泡Cell membrane,vacuole |
AUR62000862 | 544 | 60 147.10 | 6.08 | 0.470 | 32.40 | 液泡 Vacuole |
AUR62021295 | 548 | 59 615.20 | 5.58 | 0.675 | 25.39 | 细胞膜、液泡Cell membrane,vacuole |
AUR62030239 | 527 | 59 096.47 | 5.00 | 0.185 | 42.68 | 液泡 Vacuole |
AUR62003573 | 797 | 86 437.67 | 6.33 | 0.318 | 38.20 | 细胞膜、液泡Cell membrane,vacuole |
AUR62036236 | 844 | 93 703.46 | 9.27 | 0.309 | 48.18 | 细胞膜、液泡Cell membrane,vacuole |
AUR62003491 | 1 211 | 133 817.30 | 6.26 | 0.088 | 35.14 | 细胞膜 Cell membrane |
AUR62009672 | 648 | 71 771.52 | 5.28 | 0.331 | 33.94 | 细胞膜、液泡Cell membrane,vacuole |
AUR62026390 | 759 | 84 042.11 | 6.83 | 0.273 | 37.52 | 细胞膜、液泡Cell membrane,vacuole |
AUR62033999 | 491 | 53 035.55 | 7.08 | 0.709 | 31.97 | 细胞膜、液泡Cell membrane,vacuole |
Fig. 4 Phylogenetic analysis of NHXs proteins in Arabidopsis,wheat,maize and quinoa AT:Arabidopsis thaliana;Tr:Triticum aestivum L.;Zm:Zea mays;AU:Chenopodium quinoa Willd.
Fig. 5 Gene expression patterns and GO annotations of NHXs in quinoa A:Expression pattern analysis of NHX family under NaCl stress. B:GO annotation of NHX gene family. C:RT-qPCR analysis of NHXs genes
[1] |
朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016, 22(6):52-60.
doi: 10.3969/j.issn.1006-8082.2016.06.012 |
Zhu JK, Ni JP. Abiotic stress signaling and responses in plants[J]. China Rice, 2016, 22(6):52-60.
doi: 10.3969/j.issn.1006-8082.2016.06.012 |
|
[2] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[3] |
Hanin M, Brini F, Ebel C, et al. Plant dehydrins and stress tolerance:versatile proteins for complex mechanisms[J]. Plant Signal Behav, 2011, 6(10):1503-1509.
doi: 10.4161/psb.6.10.17088 pmid: 21897131 |
[4] |
Waditee R, Hibino T, Tanaka Y, et al. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail[J]. J Biol Chem, 2001, 276(40):36931-36938.
doi: 10.1074/jbc.M103650200 pmid: 11479290 |
[5] | Cao D, Hou WS, Liu W, et al. Overexpression of TaNHX2 enhances salt tolerance of ‘composite’and whole transgenic soybean plants[J]. Plant Cell Tissue Organ Cult PCTOC, 2011, 107(3):541-552. |
[6] |
Ratner A, Jacoby B. Effect of K+, its counter anion, and pH on sodium efflux from barley root tips[J]. J Exp Bot, 1976, 27(5):843-852.
doi: 10.1093/jxb/27.5.843 URL |
[7] |
Gaxiola RA, Rao R, Sherman A, et al. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast[J]. Proc Natl Acad Sci USA, 1999, 96(4):1480-1485.
doi: 10.1073/pnas.96.4.1480 URL |
[8] |
Fukuda A, Nakamura A, Tagiri A, et al. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice[J]. Plant Cell Physiol, 2004, 45(2):146-159.
doi: 10.1093/pcp/pch014 URL |
[9] |
Brini F, Gaxiola RA, Berkowitz GA, et al. Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump[J]. Plant Physiol Biochem, 2005, 43(4):347-354.
doi: 10.1016/j.plaphy.2005.02.010 URL |
[10] |
Huang Y, Zhang XX, Li YH, et al. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. J Integr Agric, 2018, 17(12):2612-2623.
doi: 10.1016/S2095-3119(18)61998-7 URL |
[11] |
Barragán V, Leidi EO, Andrés Z, et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. Plant Cell, 2012, 24(3):1127-1142.
doi: 10.1105/tpc.111.095273 URL |
[12] |
Qiu QS. Plant and yeast NHX antiporters:roles in membrane trafficking[J]. J Integr Plant Biol, 2012, 54(2):66-72.
doi: 10.1111/j.1744-7909.2012.01097.x URL |
[13] |
Dragwidge JM, Ford BA, Ashnest JR, et al. Two endosomal NHX-type Na+/H+ antiporters are involved in auxin-mediated development in Arabidopsis thaliana[J]. Plant Cell Physiol, 2018, 59(8):1660-1669.
doi: 10.1093/pcp/pcy090 pmid: 29788486 |
[14] |
Wang J, Qiu NW, Wang P, et al. Na+ compartmentation strategy of Chinese cabbage in response to salt stress[J]. Plant Physiol Biochem, 2019, 140:151-157.
doi: 10.1016/j.plaphy.2019.05.001 URL |
[15] |
Li WYF, Wong FL, Tsai SN, et al. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow(BY)-2 cells[J]. Plant Cell Environ, 2006, 29(6):1122-1137.
doi: 10.1111/j.1365-3040.2005.01487.x URL |
[16] |
Ayadi M, Martins V, Ben Ayed R, et al. Genome wide identification, molecular characterization, and gene expression analyses of grapevine NHX antiporters suggest their involvement in growth, ripening, seed dormancy, and stress response[J]. Biochem Genet, 2020, 58(1):102-128.
doi: 10.1007/s10528-019-09930-4 pmid: 31286319 |
[17] | 董丽君, 刘灵娣, 车文利, 等. 转Na+/H+逆向转运蛋白基因(AlNHX1)大豆纯合系筛选及生理分析[J]. 大豆科学, 2015, 34(3):378-383. |
Dong LJ, Liu LD, Che WL, et al. Screening of homogeneous transgenic lines with Na+/H+ antiporter gene(AlNHX1)in soybean and its physiological analysis[J]. Soybean Sci, 2015, 34(3):378-383. | |
[18] | Yarra R, He SJ, Abbagani S, et al. Overexpression of a wheat Na+/H+ antiporter gene(TaNHX2)enhances tolerance to salt stress in transgenic tomato plants(Solanum lycopersicum L.)[J]. Plant Cell Tissue Organ Cult PCTOC, 2012, 111(1):49-57. |
[19] |
Li WH, Du J, Feng HM, et al. Function of NHX-type transporters in improving rice tolerance to aluminum stress and soil acidity[J]. Planta, 2020, 251(3):71.
doi: 10.1007/s00425-020-03361-x pmid: 32108903 |
[20] |
Jacobsen SE, Mujica A, Jensen CR. The resistance of quinoa(Chenopodium quinoaWilld. )to adverse abiotic factors[J]. Food Rev Int, 2003, 19(1/2):99-109.
doi: 10.1081/FRI-120018872 URL |
[21] | González JA, Gallardo M, Hilal M, et al. Physiological responses of quinoa(Chenopodium quinoa Willd. )to drought and waterlogging stresses:dry matter partitioning[J]. Bot Stud, 2009, 50(1):35-42. |
[22] |
Adolf VI, Shabala S, Andersen MN, et al. Varietal differences of quinoa’s tolerance to saline conditions[J]. Plant Soil, 2012, 357(1/2):117-129.
doi: 10.1007/s11104-012-1133-7 URL |
[23] |
Jarvis DE, Ho YS, Lightfoot DJ, et al. The genome of Chenopodium quinoa[J]. Nature, 2017, 542(7641):307-312.
doi: 10.1038/nature21370 URL |
[24] | 贾冰晨, 王宇, 张东亮, 等. 藜麦内参基因筛选及盐胁迫相关基因表达分析[J]. 烟台大学学报:自然科学与工程版, 2020, 33(3):283-288. |
Jia BC, Wang Y, Zhang DL, et al. Screening of reference genes and analysis of gene expression under salt stress in Chenopodium quinoa[J]. J Yantai Univ Nat Sci Eng Ed, 2020, 33(3):283-288. | |
[25] |
Ohnishi M, Fukada-Tanaka S, Hoshino A, et al. Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory[J]. Plant Cell Physiol, 2005, 46(2):259-267.
pmid: 15695437 |
[26] | 卢世雄, 许春苗, 何红红, 等. 葡萄NHX基因家族的鉴定和表达分析[J]. 果树学报, 2019, 36(3):266-276. |
Lu SX, Xu CM, He HH, et al. Identification and expression analysis of NHX genes family in grape[J]. J Fruit Sci, 2019, 36(3):266-276. | |
[27] | 徐亚, 滕梦鑫, 何岳东, 等. 香蕉NHX基因家族的鉴定及表达分析[J]. 植物生理学报, 2021, 57(3):681-691. |
Xu Y, Teng MX, He YD, et al. Identification and expression analysis of NHX genes family in banana[J]. Plant Physiol J, 2021, 57(3):681-691.
doi: 10.1104/pp.57.5.681 URL |
|
[28] | 李静, 刘明, 孙晶, 等. Na+(K+)/H+转运蛋白NHX基因的研究进展[J]. 大豆科学, 2011, 30(6):1035-1039. |
Li J, Liu M, Sun J, et al. Progress of research on Na+(K+)/H+ antiporter NHX gene[J]. Soybean Sci, 2011, 30(6):1035-1039. | |
[29] |
Lu SY, Jing YX, Shen SH, et al. Antiporter gene from Hordum brevisubulatum(Trin. )link and its overexpression in transgenic tobaccos[J]. J Integr Plant Biol, 2005, 47(3):343-349.
doi: 10.1111/j.1744-7909.2005.00027.x URL |
[30] | 杨杰, 陈蓉, 胡文娟, 等. 甜橙NHX基因家族的鉴定及功能分析[J]. 江苏农业科学, 2022, 50(7):35-42. |
Yang J, Chen R, Hu WJ, et al. Identification and functional analysis of NHX gene family in Citrus sinensis[J]. Jiangsu Agric Sci, 2022, 50(7):35-42. | |
[31] | 郝东风, 兰海燕, 陈邦党, 等. 新疆盐生植物耐盐基因NHX转化甘蓝型油菜及其耐盐性的初步研究[J]. 生物技术通报, 2006(3):81-84. |
Hao DF, Lan HY, Chen BD, et al. Introduction of Na+/H+ transporter gene NHX from native Halophyte salicornia spp in Xinjiang into Brassica napus and its salt tolerance[J]. Biotechnol Bull, 2006(3):81-84. | |
[32] | 赵云霞, 郭丹丽, 魏艳玲, 等. 新疆无苞芥Na+/H+逆向转运蛋白基因OpNHX1的克隆、表达分析与功能验证[J]. 生物技术通报, 2014(7):74-80. |
Zhao YX, Guo DL, Wei YL, et al. Cloning, expressing and functional analysis of Na+/H+ antiporter gene OpNHX1 from Olimarabidop-sis pumila in Xinjiang[J]. Biotechnol Bull, 2014(7):74-80. | |
[33] |
Ruiz KB, Maldonado J, Biondi S, et al. RNA-seq analysis of salt-stressed versus non salt-stressed transcriptomes of Chenopodium quinoa Landrace R49[J]. Genes, 2019, 10(12):1042.
doi: 10.3390/genes10121042 URL |
[1] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[2] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[3] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[4] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[5] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[6] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[7] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[8] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[9] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
[10] | ZHAO Zhong-juan, YANG Kai, HU Jin-dong, WEI Yan-li, LI Ling, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum ST02 on the Growth of Peppermint and Physicochemical Properties of Root Zone Soil Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(7): 224-235. |
[11] | YANG Jia-bao, ZHOU Zhi-ming, ZHANG Zhan, FENG Li, SUN Li. Cloning,Expression of Helianthus annuus HaLACS1 Gene and Identification of Its Functional Complementation in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2022, 38(6): 147-156. |
[12] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[13] | CAO Ying-hui, HU Mei-juan, TONG Yan, ZHANG Yan-ping, ZHAO Kai, PENG Dong-hui, ZHOU Yu-zhen. Identification of the ABC Gene Family and Expression Pattern Analysis During Flower Development in Cymbidium ensifolium [J]. Biotechnology Bulletin, 2022, 38(11): 162-174. |
[14] | ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress [J]. Biotechnology Bulletin, 2022, 38(10): 115-123. |
[15] | YANG Hong-liang, YUAN Zhen, QIAN Xu-jia-zhi, XU Da-wei. Expression Profile Analysis of Thionin-like Gene Family in Barley [J]. Biotechnology Bulletin, 2022, 38(10): 140-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||