Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 166-174.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0489
Previous Articles Next Articles
JIANG Nan1(), SHI Yang1, ZHAO Zhi-hui1, LI Bin1, ZHAO Yi-hui1, YANG Jun-biao1, YAN Jia-ming1, JIN Yu-fan1, CHEN Ji2, HUANG Jin1()
Received:
2022-04-21
Online:
2023-01-26
Published:
2023-02-02
Contact:
HUANG Jin
E-mail:2091077656@qq.com;huangjin18@cdut.edu.cn
JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress[J]. Biotechnology Bulletin, 2023, 39(1): 166-174.
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
OsPT1-qF | CTACTGGCGGATGAAGATG |
OsPT1-qR | GACCTTGCTGAAGATGTCC |
Ubiquitin-qF | ATCACGCTGGAGGTGGAGT |
Ubiquitin-qR | AGGCCTTCTGGTTGTAGACG |
Table 1 Quantitative real-time PCR primer sequence
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
OsPT1-qF | CTACTGGCGGATGAAGATG |
OsPT1-qR | GACCTTGCTGAAGATGTCC |
Ubiquitin-qF | ATCACGCTGGAGGTGGAGT |
Ubiquitin-qR | AGGCCTTCTGGTTGTAGACG |
Fig. 1 PCR amplification of OsPT1 gene and endonuclease digestion of the recombinant vector pGADT7-OsPT1 A: The PCR amplification of OsPT1 gene. B: Recombinant vector after digestion
蛋白质Protein | 氨基酸数Number of amino acid/aa | 分子式 Formula | 分子量Molecular weight/kD | 等电点pI | 不稳定指数Instability index | 平均疏水性Hydropathy index | 正/负电残基数Acid-base amino acid | 脂溶指数Aliphatic index |
---|---|---|---|---|---|---|---|---|
OsPT1 | 527 | C2656H4021N667O710S25 | 57.46 | 8.57 | 31.09 | 0.361 | 38/34 | 90.09 |
Table 2 Physicochemical properties of OsPT1 protein
蛋白质Protein | 氨基酸数Number of amino acid/aa | 分子式 Formula | 分子量Molecular weight/kD | 等电点pI | 不稳定指数Instability index | 平均疏水性Hydropathy index | 正/负电残基数Acid-base amino acid | 脂溶指数Aliphatic index |
---|---|---|---|---|---|---|---|---|
OsPT1 | 527 | C2656H4021N667O710S25 | 57.46 | 8.57 | 31.09 | 0.361 | 38/34 | 90.09 |
氨基酸Amino acid | 数量Quantity | 比例Proportion/% | 氨基酸Amino acids | 数量Quantity | 比例Proportion/% |
---|---|---|---|---|---|
Ala(A) | 67 | 12.7 | Arg(R) | 20 | 3.8 |
Asn(N) | 11 | 2.1 | Asp(D) | 18 | 3.4 |
Cys(C) | 6 | 1.1 | Gln(Q) | 16 | 3.0 |
Glu(E) | 16 | 3.0 | Gly(G) | 52 | 9.9 |
His(H) | 12 | 2.3 | Ile(I) | 35 | 6.6 |
Leu(L) | 48 | 9.1 | Lys(K) | 18 | 3.4 |
Met(M) | 19 | 3.6 | Phe(F) | 40 | 7.6 |
Pro(P) | 22 | 4.2 | Ser(S) | 30 | 5.7 |
Thr(T) | 35 | 6.6 | Trp(W) | 11 | 2.1 |
Tyr(Y) | 22 | 4.2 | Val(V) | 29 | 5.5 |
Table 3 Amino acid composition of OsPT1 protein
氨基酸Amino acid | 数量Quantity | 比例Proportion/% | 氨基酸Amino acids | 数量Quantity | 比例Proportion/% |
---|---|---|---|---|---|
Ala(A) | 67 | 12.7 | Arg(R) | 20 | 3.8 |
Asn(N) | 11 | 2.1 | Asp(D) | 18 | 3.4 |
Cys(C) | 6 | 1.1 | Gln(Q) | 16 | 3.0 |
Glu(E) | 16 | 3.0 | Gly(G) | 52 | 9.9 |
His(H) | 12 | 2.3 | Ile(I) | 35 | 6.6 |
Leu(L) | 48 | 9.1 | Lys(K) | 18 | 3.4 |
Met(M) | 19 | 3.6 | Phe(F) | 40 | 7.6 |
Pro(P) | 22 | 4.2 | Ser(S) | 30 | 5.7 |
Thr(T) | 35 | 6.6 | Trp(W) | 11 | 2.1 |
Tyr(Y) | 22 | 4.2 | Val(V) | 29 | 5.5 |
Fig. 2 Hydrophobicity analysis of OsPT1 protein Regions with values above 0 are hydrophobic in character. Regions with values less than 0 are hydrophilic in character
Fig. 3 Secondary and tertiary structure prediction of OsPT1 protein A: The secondary structure of OsPT1, where blue indicates α-helix, red indicates extended chain, green indicates β-sheet, purple indicates irregular curl, and the abscissa indicates the position of each residue in the amino acid sequence of OsPT1. B: The tertiary structure of OsPT1, where purple indicates α-helix, blue represents irregular curl, and red represents Ala
Fig. 4 potential phosphorylation sites analysis of OsPT1 protein Red line indicates potential phosphorylated serine residues; green line indicates potential phosphorylated threonine residues; blue line indicates potential phosphorylated tyrosine residues; pink horizontal line indicates threshold for modification potential; the abscissa indicates the position of each residue in the amino acid sequence of OsPT1, and the ordinate indicates predicted phosphorylation potential score
Fig. 5 Phylogenetic analysis of PT1 proteins TdPT1: Triticum dicoccoides, XP_037426503.1; TaPT1: Triticum aestivum, AIZ11178.1; HvPT1: Hordeum vulgare, AAN37900.1; ZmPT1: Zea mays, NP_001183901.1; OsPT1: Oryza sativa, XP_015631295.1; SbPT1: Sorghum bicolor, XP_002467158.1; VvPT1: Vitis vinifera, XP_002281264.1; AtPT1: Arabidopsis thaliana, NP_001319749.1; SlPT1: Solanum lycopersicum, CAA76075.1; GmPT1: Glycine max, NP_001240239.1; PtPT1: Populus trichocarpa, XP_002300153.3
Fig. 6 Cis-acting elements analysis of OsPT1 gene Blocks of different colors indicate light responsiveness elements(green and red), anaerobic responsiveness elements(yellow), MeJA responsiveness elements(pink), Sal Icylic acid responsiveness elements(blue)and disease, stress responsiveness elements(grey), respectively
[1] |
Han YX, Ni ZL, Li SL, et al. Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil[J]. Environ Sci Pollut Res, 2018, 25(18): 17434-17443.
doi: 10.1007/s11356-018-1896-3 URL |
[2] |
Rascio N, Dalla Vecchia F, la Rocca N, et al. Metal accumulation and damage in rice(cv. Vialone nano)seedlings exposed to cadmium[J]. Environ Exp Bot, 2008, 62(3): 267-278.
doi: 10.1016/j.envexpbot.2007.09.002 URL |
[3] | 李陈贞, 孙亚莉, 刘红梅, 等. 镉胁迫下不同水稻品种幼苗生长及光合性能的差异[J]. 湖南农业大学学报: 自然科学版, 2021, 47(2): 147-152. |
Li CZ, Sun YL, Liu HM, et al. The difference of seedling growth and photosynthetic performance of different rice varieties under cadmium stress[J]. J Hunan Agric Univ Nat Sci, 2021, 47(2): 147-152. | |
[4] |
Johri N, Jacquillet G, Unwin R. Heavy metal poisoning: the effects of cadmium on the kidney[J]. Biometals, 2010, 23(5): 783-792.
doi: 10.1007/s10534-010-9328-y pmid: 20354761 |
[5] |
Nakagawa H, Tabata M, Morikawa Y, et al. High mortality and shortened life-span in patients with itai-itai disease and subjects with suspected disease[J]. Arch Environ Health, 1990, 45(5): 283-287.
doi: 10.1080/00039896.1990.10118747 URL |
[6] |
Liu CL, Ding SL, Zhang AP, et al. Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding[J]. J Integr Plant Biol, 2020, 62(3): 349-359.
doi: 10.1111/jipb.12909 |
[7] |
Yang CH, Zhang Y, Huang CF. Reduction in cadmium accumulation in Japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5[J]. J Integr Agric, 2019, 18(3): 688-697.
doi: 10.1016/S2095-3119(18)61904-5 URL |
[8] |
Hu YA, Cheng HF, Tao S. The challenges and solutions for cadmium-contaminated rice in China: a critical review[J]. Environ Int, 2016, 92/93: 515-532.
doi: 10.1016/j.envint.2016.04.042 URL |
[9] | 夏凡, 代婷婷, 姚新转, 等. 水稻OPR基因的克隆及其在烟草中抗镉性分析[J]. 种子, 2020, 39(5): 53-58. |
Xia F, Dai TT, Yao XZ, et al. Cloning of Oryza sativa OPR gene and its cadmium resistance in tobacco[J]. Seed, 2020, 39(5): 53-58. | |
[10] | 安鹏虎, 张多民, 周子方, 等. 植物重金属转运蛋白P1B-ATPases研究进展[J]. 生物工程学报, 2021, 37(9): 3020-3030. |
An PH, Zhang DM, Zhou ZF, et al. Advances in plant heavy metal transporter P1B-ATPases[J]. Chin J Biotechnol, 2021, 37(9): 3020-3030. | |
[11] |
Jogawat A, Yadav B, Chhaya, et al. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants[J]. Physiol Plant, 2021, 173(1): 259-275.
doi: 10.1111/ppl.13370 pmid: 33586164 |
[12] | 郭兆来, 袁鑫奇, 汪斯琛, 等. 植物重金属耐性相关基因研究进展[J]. 环境生态学, 2020, 2(12): 41-47, 54. |
Guo ZL, Yuan XQ, Wang SC, et al. Research progress on heavy metal tolerance-related genes in plants[J]. Environ Ecol, 2020, 2(12): 41-47, 54. | |
[13] | 刘梅, 李祖然, 祖艳群. 植物吸收、转移镉相关的转运蛋白CAXs和HMAs的研究进展[J]. 中国农学通报, 2020, 36(30): 82-90. |
Liu M, Li ZR, Zu YQ. Transport protein CAXs and HMAs related to cadmium absorbing and transferring of plant: a review[J]. Chin Agric Sci Bull, 2020, 36(30): 82-90. | |
[14] | 王鹏云, 晁代印. 重金属污染的植物修复及相关分子机制[J]. 生物工程学报, 2020, 36(3): 426-435. |
Wang PY, Chao DY. Phytoremediation of heavy metal contamination and related molecular mechanisms in plants[J]. Chin J Biotechnol, 2020, 36(3): 426-435. | |
[15] | Pittman JK, Hirschi KD. CAX-ing a wide net: Cation/H(+)transporters in metal remediation and abiotic stress signalling[J]. Plant Biol(Stuttg), 2016, 18(5): 741-749. |
[16] |
Yang L, Wei Y, Li N, et al. Declined cadmium accumulation in Na+/H+ antiporter(NHX1)transgenic duckweed under cadmium stress[J]. Ecotoxicol Environ Saf, 2019, 182: 109397.
doi: 10.1016/j.ecoenv.2019.109397 URL |
[17] |
Liu F, Chang XJ, Ye Y, et al. Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice[J]. Mol Plant, 2011, 4(6): 1105-1122.
doi: 10.1093/mp/ssr058 pmid: 21832284 |
[18] |
Sun SB, Gu M, Cao Y, et al. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice[J]. Plant Physiol, 2012, 159(4): 1571-1581.
doi: 10.1104/pp.112.196345 pmid: 22649273 |
[19] |
Kamiya T, Islam R, Duan GL, et al. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice[J]. Soil Sci Plant Nutr, 2013, 59(4): 580-590.
doi: 10.1080/00380768.2013.804390 URL |
[20] | 黄新朋. 水稻磷转运蛋白基因OsPTl的功能研究[D]. 南京: 南京农业大学, 2010. |
Huang XP. Functional analysis of a phosphate transporter gene OsPtl in rice[D]. Nanjing: Nanjing Agricultural University, 2010. | |
[21] |
Ye Y, Li P, Xu TQ, et al. OsPT4 contributes to arsenate uptake and transport in rice[J]. Front Plant Sci, 2017, 8: 2197.
doi: 10.3389/fpls.2017.02197 pmid: 29312424 |
[22] |
Anandan A, Parameswaran C, Mahender A, et al. Trait variations and expression profiling of OsPHT1 gene family at the early growth-stages under phosphorus-limited conditions[J]. Sci Rep, 2021, 11(1): 13563.
doi: 10.1038/s41598-021-92580-7 pmid: 34193908 |
[23] | 张晓. 磷酸盐转运蛋白OsPT5/OsPT7与质子焦磷酸酶AVP1D影响植物磷素吸收转运和生长发育的机制研究[D]. 南京: 南京农业大学, 2014. |
Zhang X. Characterization of the effect of phosphate transporters OsPT5/OsPT7 and proton-pyrophosphatase AVP1D on plant phosphate uptake and development[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[24] | 贾宏昉. 水稻高亲和磷转运蛋白基因OsPht1;8的功能研究[D]. 南京: 南京农业大学, 2011. |
Jia HF. Functional analysis of a phosphate transporter gene OsPht1;8 in rice[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[25] | Cao MX, Liu HZ, Zhang C, et al. Functional analysis of StPHT1;7, a Solanum tuberosum L. phosphate transporter gene, in growth and drought tolerance[J]. Plants(Basel), 2020, 9(10): 1384. |
[26] | Faraji S, Hasanzadeh S, Heidari P. Comparative in silico analysis of phosphate transporter gene family, PHT, in Camelina sativa gemome[J]. Gene Rep, 2021, 25: 101351. |
[27] |
Gietz RD, Schiestl RH, Willems AR, et al. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure[J]. Yeast, 1995, 11(4): 355-360.
doi: 10.1002/yea.320110408 pmid: 7785336 |
[28] |
许肖博, 安鹏虎, 郭天骄, 等. 水稻镉胁迫响应机制及防控措施研究进展[J]. 中国水稻科学, 2021, 35(5): 415-426.
doi: 10.16819/j.1001-7216.2021.201209 |
Xu XB, An PH, Guo TJ, et al. Research progresses on response mechanisms and control measures of cadmium stress in rice[J]. Chin J Rice Sci, 2021, 35(5): 415-426.
doi: 10.16819/j.1001-7216.2021.201209 |
|
[29] |
方波, 肖腾伟, 苏娜娜, 等. 水稻镉吸收及其在各器官间转运积累的研究进展[J]. 中国水稻科学, 2021, 35(3): 225-237.
doi: 10.16819/j.1001-7216.2021.0719 |
Fang B, Xiao TW, Su NN, et al. Research progress on cadmium uptake and its transport and accumulation among organs in rice[J]. Chin J Rice Sci, 2021, 35(3): 225-237.
doi: 10.16819/j.1001-7216.2021.0719 |
|
[30] | Li DD, Xu XM, Hu XQ, et al. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa[J]. Front Plant Sci, 2015, 6: 1149. |
[31] |
Ma QJ, Sun MH, Lu J, et al. Phosphorylation of a malate transporter promotes malate excretion and reduces cadmium uptake in apple[J]. J Exp Bot, 2020, 71(12): 3437-3449.
doi: 10.1093/jxb/eraa121 URL |
[32] |
Navarro C, Mateo-Elizalde C, Mohan TC, et al. Arsenite provides a selective signal that coordinates arsenate uptake and detoxification through the regulation of PHR1 stability in Arabidopsis[J]. Mol Plant, 2021, 14(9): 1489-1507.
doi: 10.1016/j.molp.2021.05.020 URL |
[33] | 高佳, 刘雄伦, 刘玲, 等. 水稻磷酸盐转运蛋白Pht1家族研究进展[J]. 中国农学通报, 2009, 25(15): 31-34. |
Gao J, Liu XL, Liu L, et al. Advance of rice phosphate transporters Pht1[J]. Chin Agric Sci Bull, 2009, 25(15): 31-34. | |
[34] | 戴闽玥. 外源磷对红树植物抗镉胁迫的调控机制[D]. 厦门: 厦门大学, 2018. |
Dai MY. The regulatory mechanism of exogenous phosphorous in cadmium resistance of mangroves[D]. Xiamen: Xiamen University, 2018. | |
[35] |
Kerdsomboon K, Techo T, Limcharoensuk T, et al. Low phosphate mitigates cadmium-induced oxidative stress in Saccharomyces cerevisiae by enhancing endogenous antioxidant defense system[J]. Environ Microbiol, 2022, 24(2): 707-720.
doi: 10.1111/1462-2920.15875 URL |
[36] | 张文萍, 管啸, 钟诚, 等. 施磷增氧条件对水稻光合特性及镉吸收分配的影响[J/OL]. 农业环境科学学报, 2022. http://kns.cnki.net/kcms/detail/12.1347.s.20220321.2045.002.html. |
Zhang WP, Guan X, Zhong C, et al. Effects of phosphorus and oxygation on photosynthetic characteristics, cadmium absorption, and distribution in rice[J]. J Agro Environ Sci, 2022. ttp://kns.cnki.net/kcms/detail/12.1347.s.20220321.2045.002.html. | |
[37] | 谭文韬, 霍洋, 周航, 等. 水稻磷盈亏对镉吸收转运的影响[J]. 环境科学, 2022, 43(6): 3308-3314. |
Tan WT, Huo Y, Zhou H, et al. Effects of phosphorus sufficiency and deficiency on cadmium uptake and transportation by rice[J]. Environ Sci, 2022, 43(6): 3308-3314.
doi: 10.1021/es802832u URL |
|
[38] | 霍洋, 仇银燕, 周航, 等. 外源磷对镉胁迫下水稻生长及镉累积转运的影响[J]. 环境科学, 2020, 41(10): 4719-4725. |
Huo Y, Qiu YY, Zhou H, et al. Effects of exogenous phosphorus on rice growth and cadmium accumulation and transportation under cadmium stress[J]. Environ Sci, 2020, 41(10): 4719-4725. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[3] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[4] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[5] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[6] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[7] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[8] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[9] | SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.) [J]. Biotechnology Bulletin, 2023, 39(8): 234-240. |
[10] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[11] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[12] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[13] | LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts [J]. Biotechnology Bulletin, 2023, 39(7): 67-79. |
[14] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[15] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||