Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 52-58.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0784
Previous Articles Next Articles
ZHANG Hua-xiang1(), XU Xiao-ting1, ZHENG Yun-ting2, XIAO Chun-qiao2()
Received:
2022-06-25
Online:
2023-03-26
Published:
2023-04-10
ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil[J]. Biotechnology Bulletin, 2023, 39(3): 52-58.
[1] |
Peng JF, Song YH, Yuan P, et al. The remediation of heavy metals contaminated sediment[J]. J Hazard Mater, 2009, 161(2-3): 633-640.
doi: 10.1016/j.jhazmat.2008.04.061 URL |
[2] | 林钰栅, 范缙, 蔡邦平, 等. 解磷微生物在重金属污染原位修复中的作用及其机理研究进展[J]. 厦门大学学报: 自然科学版, 2016, 55(5): 697-706. |
Lin YS, Fan J, Cai BP, et al. Progress on roles and mechanisms of phosphate-solubilizing microorganisms in remediation of heavy metal contaminated soils[J]. J Xiamen Univ Nat Sci, 2016, 55(5): 697-706. | |
[3] | 胡红青, 黄益宗, 黄巧云, 等. 农田土壤重金属污染化学钝化修复研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1676-1685. |
Hu HQ, Huang YZ, Huang QY, et al. Research progress of heavy metals chemical immobilization in farm land[J]. J Plant Nutr Fertil, 2017, 23(6): 1676-1685. | |
[4] |
Cao XD, Ma LQ, Chen M, et al. Lead transformation and distribution in the soils of shooting ranges in Florida, USA[J]. Sci Total Environ, 2003, 307(1-2-3): 179-189.
doi: 10.1016/S0048-9697(02)00543-0 URL |
[5] |
Peng X, Deng YE, Liu L, et al. The addition of biochar as a fertilizer supplement for the attenuation of potentially toxic elements in phosphogypsum-amended soil[J]. J Clean Prod, 2020, 277: 124052.
doi: 10.1016/j.jclepro.2020.124052 URL |
[6] |
Wang GB, Zhang QQ, Du WC, et al. In-situ immobilization of cadmium-polluted upland soil: a ten-year field study[J]. Ecotoxicol Environ Saf, 2021, 207: 111275.
doi: 10.1016/j.ecoenv.2020.111275 URL |
[7] |
Gupta DK, Chatterjee S, Datta S, et al. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals[J]. Chemosphere, 2014, 108: 134-144.
doi: 10.1016/j.chemosphere.2014.01.030 pmid: 24560283 |
[8] |
Park JH, Bolan N, Megharaj M, et al. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils[J]. Sci Total Environ, 2011, 409(4): 853-860.
doi: 10.1016/j.scitotenv.2010.11.003 URL |
[9] |
Xiao CQ, Chi R, He H, et al. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth[J]. Appl Biochem Biotechnol, 2009, 159(2): 330-342.
doi: 10.1007/s12010-009-8590-3 pmid: 19277482 |
[10] |
Estrada-Bonilla GA, Durrer A, Cardoso EJBN. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community[J]. Appl Soil Ecol, 2021, 157: 103760.
doi: 10.1016/j.apsoil.2020.103760 URL |
[11] | Xiao C, Wang Q, Feng B, et al. Biosolubilization of rock phosphates in a bioreactor using a microbial consortium from rhizospheric soils: an analysis[J]. Miner Metall Process, 2018, 35(4): 184-191. |
[12] | 肖春桥, 池汝安. 微生物分解中低品位磷矿的研究实践[J]. 化工矿物与加工, 2015, 44(1): 47-51. |
Xiao CQ, Chi R. Research practices of microbial solubilization of mid-low grade phosphate rocks[J]. Ind Miner & Process, 2015, 44(1): 47-51. | |
[13] |
Pastore G, Kernchen S, Spohn M. Microbial solubilization of silicon and phosphorus from bedrock in relation to abundance of phosphorus-solubilizing bacteria in temperate forest soils[J]. Soil Biol Biochem, 2020, 151: 108050.
doi: 10.1016/j.soilbio.2020.108050 URL |
[14] | 田晓娟, 杜德平, 王艳, 等. 解磷菌分离及其对内蒙古布龙图低品位磷矿利用研究[J]. 地球学报, 2007, 28(4): 377-381. |
Tian XJ, Du DP, Wang Y, et al. Isolation of phosphate solubilizing bacteria and its utilization to low grade phosphorous rocks from bulongtu area, Inner Mongolia[J]. Acta Geosci Sin, 2007, 28(4): 377-381. | |
[15] |
Ben Farhat M, Farhat A, Bejar W, et al. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa[J]. Arch Microbiol, 2009, 191(11): 815-824.
doi: 10.1007/s00203-009-0513-8 URL |
[16] | Gupta N, Sabat J, Parida R, et al. Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines[J]. Acta Bot Croat, 2007, 66: 197-204. |
[17] |
Xiao CQ, Chi R, Huang XH, et al. Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines[J]. Ecol Eng, 2008, 33(2): 187-193.
doi: 10.1016/j.ecoleng.2008.04.001 URL |
[18] |
Xiao CQ, Zhou Y, Hu JG, et al. Biosolubilization of low-grade rock phosphate by native microbial consortia from phosphate mines: effect of sampling sources and culture media[J]. Geomicrobiol J, 2020, 37(9): 859-866.
doi: 10.1080/01490451.2020.1793033 URL |
[19] | Xiao CQ, Wu XY, Zhu L, et al. Enhanced biosolubilization of mid-low grade phosphate rock by formation of microbial consortium biofilm from activated sludge[J]. Physicochemical Problems of Mineral Processing, 2019, 55: 217-224. |
[20] | 丁淑芳, 谢正苗, 吴卫红, 等. 含磷物质原位化学钝化重金属污染土壤的研究进展[J]. 安徽农业科学, 2012, 40(35): 17093-17097. |
Ding SF, Xie ZM, Wu WH, et al. Research progress on chemical remediation of heavy metal-contaminated soils using phosphorous-containing materials[J]. J Anhui Agric Sci, 2012, 40(35): 17093-17097. | |
[21] | 周世伟, 徐明岗. 磷酸盐修复重金属污染土壤的研究进展[J]. 生态学报, 2007, 27(7): 3043-3050. |
Zhou SW, Xu MG. The progress in phosphate remediation of heavy metal-contaminated soils[J]. Acta Ecol Sin, 2007, 27(7): 3043-3050. | |
[22] |
Henry H, Naujokas MF, Attanayake C, et al. Bioavailability-based in situ remediation to meet future lead(Pb)standards in urban soils and gardens[J]. Environ Sci Technol, 2015, 49(15): 8948-8958.
doi: 10.1021/acs.est.5b01693 URL |
[23] | Raklami A, Tahiri AI, Bechtaoui N, et al. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms[J]. J Environ Sci(China), 2021, 99: 210-221. |
[24] |
Oumani A, Mandi LL, Berrekhis F, et al. Removal of Cr3+ from tanning effluents by adsorption onto phosphate mine waste: key parameters and mechanisms[J]. J Hazard Mater, 2019, 378: 120718.
doi: 10.1016/j.jhazmat.2019.05.111 URL |
[25] |
Mignardi S, Corami A, Ferrini V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn[J]. Chemosphere, 2012, 86(4): 354-360.
doi: 10.1016/j.chemosphere.2011.09.050 pmid: 22024096 |
[26] |
Ma QY, Logan TJ, Traina SJ. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks[J]. Environ Sci Technol, 1995, 29(4): 1118-1126.
doi: 10.1021/es00004a034 pmid: 22176421 |
[27] |
Thawornchaisit U, Polprasert C. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils[J]. J Hazard Mater, 2009, 165(1-2-3): 1109-1113.
doi: 10.1016/j.jhazmat.2008.10.103 URL |
[28] |
Hao SF, Wang PY, Ge F, et al. Enhanced Lead(Pb)immobilization in red soil by phosphate solubilizing fungi associated with tricalcium phosphate influencing microbial community composition and Pb translocation in Lactuca sativa L[J]. J Hazard Mater, 2022, 424(Pt D): 127720.
doi: 10.1016/j.jhazmat.2021.127720 URL |
[29] |
Ma LL, Chen N, Feng CP, et al. Coupling enhancement of Chromium(VI)bioreduction in groundwater by phosphorus minerals[J]. Chemosphere, 2020, 240: 124896.
doi: 10.1016/j.chemosphere.2019.124896 URL |
[30] |
Sowmya S, Rekha PD, Arun AB. Uranium(VI)bioprecipitation mediated by a phosphate solubilizing Acinetobacter sp. YU-SS-SB-29 isolated from a high natural background radiation site[J]. Int Biodeterior Biodegrad, 2014, 94: 134-140.
doi: 10.1016/j.ibiod.2014.07.009 URL |
[31] | Rafati M, Khorasani N, Moattar F, et al. Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil[J]. International Journal of Environmental Research, 2011, 5: 961-970. |
[32] | 陈明, 徐慧, 蔡忠萍, 等. 植物改良矿山废弃地的研究进展[J]. 有色金属科学与工程, 2014, 5(4): 77-82. |
Chen M, Xu H, Cai ZP, et al. Advances of phytomelioration on the reclamation soil in mining area[J]. Nonferrous Met Sci Eng, 2014, 5(4): 77-82. | |
[33] |
Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?[J]. Plant Sci, 2011, 180(2): 169-181.
doi: 10.1016/j.plantsci.2010.08.016 pmid: 21421358 |
[34] |
Shahid M, Hameed S, Tariq M, et al. Characterization of mineral phosphate-solubilizing bacteria for enhanced sunflower growth and yield-attributing traits[J]. Ann Microbiol, 2015, 65(3): 1525-1536.
doi: 10.1007/s13213-014-0991-z URL |
[35] |
Pattnaik S, Dash D, Mohapatra S, et al. Improvement of rice plant productivity by native Cr(Ⅵ)reducing and plant growth promoting soil bacteria Enterobacter cloacae[J]. Chemosphere, 2020, 240: 124895.
doi: 10.1016/j.chemosphere.2019.124895 URL |
[36] | Jeong S, Moon HS, Shin D, et al. Survival of introduced phosphate-solubilizing bacteria(PSB)and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil[J]. J Hazard Mater, 2013, 263 Pt 2: 441-449. |
[37] |
Dharni S, Srivastava AK, Samad A, et al. Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite(monoterpenes)by rose-scented Geranium(Pelargonium graveolens cv. bourbon)grown on tannery sludge amended soil[J]. Chemosphere, 2014, 117: 433-439.
doi: 10.1016/j.chemosphere.2014.08.001 pmid: 25194330 |
[38] |
Guo JK, Ding YZ, Feng RW, et al. Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China[J]. Antonie Van Leeuwenhoek, 2015, 107(6): 1591-1598.
doi: 10.1007/s10482-015-0453-z URL |
[39] | 李婷, 吴明辉, 杨馨婷, 等. 植物与微生物对重金属的抗性机制及联合修复研究进展[J]. 应用与环境生物学报, 2021, 27(5): 1405-1414. |
Li T, Wu MH, Yang XT, et al. Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms[J]. Chin J Appl Environ Biol, 2021, 27(5): 1405-1414. | |
[40] |
Guarino C, Zuzolo D, Marziano M, et al. Identification of native-metal tolerant plant species in situ: environmental implications and functional traits[J]. Sci Total Environ, 2019, 650(Pt 2): 3156-3167.
doi: 10.1016/j.scitotenv.2018.09.343 URL |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | YANG Zong-zheng, ZHAO Xiao-yu, LIU Dan, XU Wen-shuai, WU Zhi-guo. Bioremediation of Cr(VI)-contaminated Farmland Soil by Microbacterium sp. BD6 [J]. Biotechnology Bulletin, 2021, 37(10): 81-90. |
[3] | GUO Wei, XUE Shuai, ZHANG Zhe-chao, DIAO Feng-wei, HU Jie, ZHANG Min, LIU Mei-chun, DING Sheng-li, JIA Bing-bing, SHI Zhong-qi. Research Progress on Bioremediation of Saline-alkali Grassland:A Review [J]. Biotechnology Bulletin, 2020, 36(7): 200-208. |
[4] | YUE Li-xiao, LI Deng-yun, ZHANG Jing-jing, TONG Lei. Isolation and Application Potential Exploration of a Diuron-degrading Bacterium [J]. Biotechnology Bulletin, 2020, 36(6): 110-119. |
[5] | ZHANG Rui-rui, QIU Shu-yi, ZHOU Shao-qi, WANG Xue-li. Screening and Performance Analysis of High-temperature Phosphate-solubilizing Microorgams in High Temperature Compost with Phosphate Rock and Discarded Vinasse Lost Grains [J]. Biotechnology Bulletin, 2020, 36(5): 110-119. |
[6] | WU Xue-ling, ZHOU Xiang-yu, WU Xiao-yan, LUO Kui, GU Yi-chao, ZHOU Han, LIAO Wan-qing, ZENG Wei-min. Construction of Tetracycline-degrading Bacterial Co-culture System and Community Analysis of Wastewater Remediation [J]. Biotechnology Bulletin, 2020, 36(10): 116-126. |
[7] | YUAN Jin-wei, CHEN Ji, CHEN Fang, LIU Wan-hong. The Augmentation Strategies and Mechanisms in the Phytoremediation of Heavy Metal-contaminated Soil [J]. Biotechnology Bulletin, 2019, 35(1): 120-130. |
[8] | ZHANG Guang-zhi, WANG Jia-ning, WU Xiao-qing, ZHOU Fang-yuan, ZHANG Xin-jian, ZHAO Xiao-yan, XIE Xue-ying, ZHOU Hong-zi. Diversity and Functional Activity of Trichoderma in the Rhizosphere Soil from Facility Tomato Production [J]. Biotechnology Bulletin, 2018, 34(4): 179-185. |
[9] | HAO Da-Cheng, ZHOU Jian-qiang, WANG Chuang, HAN Jun. Plant Bionic Remediation and Phytoremediation of Heavy Metal-contaminated Soil [J]. Biotechnology Bulletin, 2017, 33(2): 66-71. |
[10] | FENG Yan-mei, FAN Xing-hui, ZHAN Hui, TENG Shi-yu, YANG Fang, CHEN Shao-hua. Research Progress on Ecotoxicity and Microbial Degradation of Strobilurin Fungicides [J]. Biotechnology Bulletin, 2017, 33(10): 52-58. |
[11] | GAO Yu, CHENG Qian , ZHANG Meng-jun , ZHU Zhen-yu , HU Ting-ting, YANG Yu. Research Advance on Remediation Technology of Cadmium Contaminated Soil [J]. Biotechnology Bulletin, 2017, 33(10): 103-110. |
[12] | WEI Zheng1, FENG Wei-min1, SHI Yan-hua2, REN Lei1, YAN Yan-chun1. Isolation,Identification and Degradative Properties of Cyfluthrin-degrading Bacterial Strain [J]. Biotechnology Bulletin, 2016, 32(9): 114-122. |
[13] | WANG Lin SUI ,Chun-xiao,, WANG Jin. Research Progress on Phytoremediation of Wastewater Containing Bisphenol A [J]. Biotechnology Bulletin, 2016, 32(4): 63-67. |
[14] | WANG Li-hui, YAN Chao-yu, WANG Hao, ZHANG Xiang-yu. Research Progress on Bioremediation Techniques for Mercury-contaminated Soil [J]. Biotechnology Bulletin, 2016, 32(2): 51-58. |
[15] | Zhang Hairong, Tang Jingchun, Sun Kejing, Zhang Qingmin. Isolation and Identification of Saline-alkaline Tolerant Hydrocarbon-degrading Strains and Study on Their Saline-alkaline Tolerant Characteristics [J]. Biotechnology Bulletin, 2015, 31(1): 151-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||