Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (2): 51-58.doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.007
• Review • Previous Articles Next Articles
WANG Li-hui1, YAN Chao-yu1, WANG Hao2, ZHANG Xiang-yu2
Received:
2015-04-02
Online:
2016-02-24
Published:
2016-02-25
WANG Li-hui, YAN Chao-yu, WANG Hao, ZHANG Xiang-yu. Research Progress on Bioremediation Techniques for Mercury-contaminated Soil[J]. Biotechnology Bulletin, 2016, 32(2): 51-58.
[1] 冯新斌, 陈玖斌, 付学吾, 等.汞的环境地球化学研究进展[J].矿物岩石地球化学通报, 2013, 32(5):503-530. [2] Brook PR, Lee J, Reeves RD, et al.Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J].Geochemical Exploration, 1977, 7:49-57. [3] Ali H, Khan E, Sajad MA.Phytoremediation of heavy metals-Concepts and applications[J].Chemosphere, 2013, 91(7):869-881. [4] 王春霞, 朱利中, 江桂斌.环境化学学科前沿与展望[M].北京:科学出版社, 2011:359-471. [5] Yang ZM, Chen J.Mercury toxicity, molecular response and tolerance in higher plants[J].Biometals, 2012, 25(5):847-857. [6] Carrasco-Gil S, Siebner H, LeDuc DL, et al.Mercury localization and speciation in plants grown hydroponically or in a natural environment[J].Environmental Science & Technology, 2013, 47(7):3082-3090. [7] Esteban E, Deza MJ, Zornoza P.Kinetics of mercury uptake by oilseed rape and white lupin:influence of Mn and Cu[J].Acta Physiologiae Plantarum, 2013, 35(7):2339-2344. [8] Lopes MS, Lglesia-Turino S, Cabrera-Bosquet L, et al.Molecular and physiological mechanisms associated with root exposure to mercury in barley[J].Metallomics, 2013, 5(9):1305-1315. [9] Dago A, Gonzalez I, Arino C, et al.Evaluation of mercury stress in plants from the Almaden mining district by analysis of phytochelatins and their Hg complexes[J].Environmental Science & Technology, 2014, 48(11):6256-6263. [10] Park J, Song W, Ko D, et al.The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J].Plant Journal, 2012, 69(2):278-288. [11] Du X, Zhu YG, Liu WJ, et al.Uptake of mercury(Hg)by seeding of rice(Oryza sativa L.)grown in solution culture and interactions with arsenate uptake[J].Environmental and Experimental Botany, 2005, 54(1):1-7. [12] Zhang H, Feng XB, Zhu JM, et al.Selenium in soil inhibits mercury uptake and trans location in rice(Oryza sativa L.)[J].Environmental Science & Technology, 2012, 46(18):10040-10046. [13] Lomonte C, Wang YD, Doronila A, et al.Study of the spatial distribution of mercury in roots of vetiver grass(Chrysopogon zizanioides)by micro-PIXE spectrometry[J].International Journal of Phytoremediation, 2014, 16(11):1170-1182. [14] Shahid M, Pinelli E, Dumat C.Review of Pb availability and toxicity to plants in relation with metal speciation;role of synthetic and natural organic ligands[J].Journal of Hazardous Materials, 2012, 219:1-12. [15] Debeljak M, van Elteren JT, Vogel-Mikus K.Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize(Zea mays L.)root cross-sections[J].Analytica Chimica Acta, 2013, 787:155-162. [16] 杨肖娥, 龙新宪, 倪吾钟.超积累植物吸收重金属的生理及分子机制[J].植物营养与肥料学报, 2002, 8(1):8-15. [17] Ruiz ON, Alvarez D, Torres C, et al.Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability[J].Plant Biotechnology Journal, 2011, 9(5):609-617. [18] Chen YA, Chi WC, Trinh NN, et al.Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedings[J].PLoS One, 2014, 9(5):1-11. [19] Wang JX, Feng XB, Anderson CWN, et al.Implications of mercury speciation in thiosulfate treated plants[J].Environmental Scien-ce & Technology, 2012, 46(10):5361-5368. [20] Na G, Sal DE.The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plant[J].Environme-ntal and Experimental Botany, 2011, 72(1):18-25. [21] Lomonte C, Doronila AI, Gregory D, et al.Phytotoxicity of biosolids and screening of selected plant species with potential for mercury phytoextraction[J].Journal of Hazardous Materials, 2010, 173(1-3):494-501. [22] 冯保民, 麻密.植物络合素及其合酶在重金属抗性中的功能研究进展[J].应用与环境生物学报, 2003, 9(6):657-661. [23] Shahid M, Austruy A, Echevarria G, et al.EDTA-enhanced phytor-emediation of heavy metals:A review[J].Soil and Sediment Contamination, 2014, 23(4):389-416. [24] Lomonte C, Doronila A, Gregory D, et al.Chelate-assisted phytoex-traction of mercury in biosolids[J].Science of the Total Environ-ment, 2010, 409(13):2685-2692. [25] Carrasco-Gil S, Estebaranz-Yubero M, Medel-Cuesta D, et al.Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfafa plants cultivated in a Hg-polluted soil[J].Environmental and Experimental Botany, 2011, 75:16-24. [26] Smolinska B, Krol K.Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid[J].Journal of Chemical Technology and Biotechnology, 2012, 87(9):1360-1365. [27] Wang JX, Feng XB, Anderson CWN, et al.Remediation of mercury contaminated sites - A review[J].Journal of Hazardous Materials, 2012, 221:1-18. [28]杜红霞, Yasuo Igarashi, 王定勇.汞在微生物中的跨膜运输机制研究进展[J].微生物学报, 2014, 54(10):1109-1115. [29] Mok T, Chen JS, Shlykov MA, et al.Bioinformatic analyses of bacterial mercury lon(Hg2+)transporters[J].Water Air and Soil Pollution, 2012, 223(7):4443-4457. [30] Sone Y, Nakamura R, Pan-Hou H, et al.Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli[J].Biological & Pharmaceutical Bulleftin, 2013, 36(11):1835-1841. [31] Champier L, Duarte V, Michaud-Soret I, et al.Characterization of the MerD protein from Ralstonia metallidurans CH34:a possible role in bacterial mercury resistance by switching off the induction of the mer operon[J].Molecular Microbiology, 2004, 52(5):1475-1485. [32] Nagata T, Morita H, Akizawa T, et al.Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution[J].Applied Microbiology and Biotechnology, 2010, 87(2):781-786. [33] Wiatrowski HA, Ward PM, Barkay T.Novel reduction of mercury(Ⅱ)by mercury-sensitive dissimilatory metal reducing bacteria[J].Environmental Science & Technology, 2006, 40(21):6690-6696. [34] 马莹, 骆永明, 滕应, 等.根际促生菌及其在污染土壤植物修复中的应用[J].土壤学报, 2013, 50(5):1021-1031. [35] 陆雅海, 张福锁.根际微生物研究进展[J].土壤, 2006, 38(2):113-121. [36] 罗巧玉, 王晓娟, 林双双, 等.AM真菌对重金属污染土壤生物修复的应用与机理[J].生态学报, 2013, 33(13):3898-3906. [37] 胡海燕, 顾宝华, 冯新斌.S12-09厌氧微生物对汞的氧化、还原和甲基化作用[C].贵阳:第七届全国环境化学大会摘要集-S12重金属污染与修复, 2013. [38] 谷春豪, 许怀凤, 仇广乐.汞的微生物甲基化与去甲基化机理研究进展[J].环境化学, 2013, 32(6):926-936. [39] Marvin-Dipasquale M, Agee J, McGowan C, et al.Methyl-mercury degradation pathways:A comparison among three mercury-impacted ecosystems[J].Environmental Science & Technology, 2000, 34(23):4908-4916. [40] Pedrero Z, Bridou R, Mounicou S, et al.Transformation, localization, and biomolecular binding of Hg species at subcellular level in methylating and nonmethylating sulfate-reducing bacteria[J].Environmental Science & Technology, 2012, 46(21):11744-11751. [41] 张卫信, 陈迪马, 赵灿灿.蚯蚓在生态系统中的作用[J].生物多样性, 2007, 15(2):142-153. [42] Sizmur T, Hodson ME.Do earthworms impact metal mobility and availability in soil? - A review[J].Environmental Pollution, 2009, 157(7):1981-1989. [43] Gudbrandsen M, Sverdrup LE, Aamodt S, et al.Short-term pre-exposure increases earthworm tolerance to mercury[J].European Journal of Soil Biology, 2007, 43(1):S261-S267. [44] 陈旭飞, 张池, 高云华, 等.蚯蚓在重金属污染土壤生物修复中的应用潜力[J].生态学杂志, 2012, 31(11):2950-2957. [45] Wu G, Kang HB, Zhang XY, et al.A critical review on the bio-removal of hazardous heavy metals from contaminated soils:Issues, progress, eco-environmental concerns and opportunities[J].Journal of Hazardous Materials, 2010, 173(1-3):1-8. [46] Alvarez CR, Moreno MJ, Bernardo FJG, et al.Mercury methylation, uptake and bioaccumulation by the earthworm Lumbricus terrestris(Oligochaeta)[J].Applied Soil Ecology, 2014, 84:45-53. [47] Zhang ZS, Zhang DM, Wang QC, et al.Bioaccumulation of total and methyl mercury in three earthworm species(Drawida sp., Allolobophora sp., and Limnodrilus sp.)[J].Bulletin of Environ-mental Contamination and Toxicology, 2009, 83(6):937-942. [48] Ernst G, Zimmermann S, Christie P, et al.Mercury, cadmium and lead concentrations in different ecophysiological groups of earthw-orms in forest soils[J].Environmental Pollution, 2008, 156(3):1304-1313. [49] Colacevich A, Sierra MJ, Borghini F, et al.Oxidative stress in eart-hworms short- and long-term exposed to highly Hg-contaminated soils[J].Journal of Hazardous Materials, 2011, 194:135-143. [50] Kaschak E, Knopf B, Petersen JH, et al.Biotic methylation of mercury by intestinal and sulfate-reducing bacteria and their potential role in mercury accumulation in the tissue of the soil-living Eisenia foetida[J].Soil Biology & Biochemistry, 2014, 69:202-211. |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[3] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[4] | XV Ru-yue, WANG Zi-xiao, SHEN Lu, WU Rong-rong, YAO Fang-ting, TAN Zhong-yuan, LIU Heng-wei, ZHANG Wen-chao. Research Progress in Bioremediation of Cr(VI) [J]. Biotechnology Bulletin, 2023, 39(6): 49-60. |
[5] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[6] | ZHANG Hua-xiang, XU Xiao-ting, ZHENG Yun-ting, XIAO Chun-qiao. Roles of Phosphate-solubilizing Microorganisms in the Passivation and Phytoremediation of Heavy Metal Contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(3): 52-58. |
[7] | HU Xue-ying, ZHANG Yue, GUO Ya-jie, QIU Tian-lei, GAO Min, SUN Xing-bin, WANG Xu-ming. Comparison in Antibiotic Resistance Genes Carried by Bacteriophages and Bacteria in Farmland Soil Amended with Different Fertilizers [J]. Biotechnology Bulletin, 2022, 38(9): 116-126. |
[8] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
[9] | WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas [J]. Biotechnology Bulletin, 2022, 38(7): 205-214. |
[10] | ZHAO Lin-yan, GUAN Hui-lin, WANG Ke-shu, LU Yan-lei, XIANG Ping, WEI Fu-gang, YANG Shao-zhou, XU Wu-mei. Effects of Soil Moisture on the Microbial Community Under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2022, 38(7): 215-223. |
[11] | ZHAO Zhong-juan, YANG Kai, HU Jin-dong, WEI Yan-li, LI Ling, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum ST02 on the Growth of Peppermint and Physicochemical Properties of Root Zone Soil Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(7): 224-235. |
[12] | XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield [J]. Biotechnology Bulletin, 2022, 38(6): 221-234. |
[13] | ZHANG Hao-xin, WANG Zhong-hua, NIU bing, GUO Kang, LIU Lu, JIANG Ying, ZHANG Shi-xiang. Screening,Identification and Broad-spectrum Application of Efficient IAA-producing Bacteria Dissolving Phosphorus and Potassium [J]. Biotechnology Bulletin, 2022, 38(5): 100-111. |
[14] | WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases [J]. Biotechnology Bulletin, 2022, 38(5): 4-12. |
[15] | ZHU Jing, YU Cun. Effects of Trichoderma longibrachiatum on Maize Growth,Soil Fertility and Rhizosphere Microorganism [J]. Biotechnology Bulletin, 2022, 38(4): 230-241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||